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Abstract 

An iterative method based on Shapley Value Cooperative Game Theory is proposed for the calculation of local 
marginal price (LMP) for each Distributed Generator (DG) bus on a network. The LMP value is determined for each 
DG on the basis of its contribution to reduce loss and emission reduction, which is assessed using the Shapley Value 
approach. The proposed approach enables the Distribution Company (DISCO) decision-maker to operate the net-
work optimally in terms of loss and emission. The proposed method is implemented in the Taiwan Power Company 
distribution network 7 warnings consisting of 84 buses and 11 feeders in the MATLAB environment. The results show 
that the proposed approach allows DISCO to operate the network on the basis of its priority between the reduction of 
active power loss and emission in the network

Keywords:  Distributed Generator (DG), Locational Marginal Price (LMP), Loss reduction, Emission reduction, Shapley 
Value Method Decision Making, Distribution Company (DISCO), Cooperative game theory

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

1  Introduction
Restructuring electrical power utilities, increasing load 
demand, technical innovation, concern for greenhouse 
gas emissions, improving voltage and loss reduction are 
some of the key reasons for increasing the penetration 
of Distributed Generator (DG) units into the distribu-
tion network [1–3]. In addition, DG Units can provide 
customers with freedom and flexibility in planning and 
developing installations according to load criticality [4]. 
Following the integration of DGs, distribution networks 
are transformed from passive to active states, similar to 
transmission networks. Some of the practices that have 
been implemented in transmission systems, such as 
nodal pricing, may also be applied in active distribution 
networks.

The role of the Distribution Company (DISCO) deci-
sion-maker is very important in a deregulated environ-
ment, and some of the responsibilities are

•	 Ensuring that the network operates optimally in 
terms of certain parameters, such as loss and emis-
sion.

•	 Ensuring that the decisions taken must be economi-
cally viable for both DISCO and DG owners

•	 Maintaining fair competition between owners of pri-
vate DGs and control of privately owned generators.

The above responsibilities can be fulfilled by providing 
financial incentives to each DG owner. Nodal pricing is 
one of the well-organized procedures for financial incen-
tives [5] and various policies are available including the 
well-know Locational Marginal Price [6, 7].

Distribution LMP formulation based on active and 
reactive power losses is developed in [8], and linearized 
power flow for distribution (LPF-D), loss factors for 
distribution (LF-D), and linear optimal power flow for 
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distribution (LOPF-D) are processed to compute distri-
bution LMP in a distribution system. In [9], three-phase 
distribution LMP computing mechanism is developed 
to operate the distribution network efficiently by mini-
mizing the losses, improving the voltage profile and pre-
serving the balance between the three phases. In [10], 
an extended Kalman Filter based method is proposed 
to determine the nodal prices at DG buses in the distri-
bution network based on the reduction in active power 
losses by minimizing the total merchandising surplus 
(MS). The three methodologies have made important 
contributions to computing LMPs. However, they have 
not considered the active distribution system for simulta-
neous monitoring of loss, emission and reliability. A new 
methodology is proposed to compute locational marginal 
price in [11] based on energy price, loss prices caused by 
nodal active power and reactive power, congestion price 
and voltage support price using linearized AC power 
flow. Power-based distribution locational marginal pric-
ing (PDLMP) to determine the active and reactive power 
tariffs in distribution systems with high penetration of 
distributed energy resources is proposed in [12], where 
PDLMP for DG owners is computed based on over-volt-
ages, congestion, renewable energy share and distribu-
tion system operation cost.

Most publications are on LMP computing in distri-
bution network. The comparison of the research con-
tributions of different authors to the different features 
considered is shown in Table 1 with the features of A-M 
defined as: 

A:	Reduction of active power losses
B:	 Reduction of emissions
C:	Controlled surplus Merchandising
D:	DG financial gain control
E:	 Encouraging DG to take part in the loss reduction

F:	 Encourage DG to invest in reducing pollution
G:	LMP computing under current terms
H:	Estimate of LMP in the next operating conditions
K:	Strategic DISCO capacity to operate optimally
L:	 Zero excess merchandise
M:	Reactive power price

The method proposed in [17] contains all the men-
tioned parameters, and the nucleolus theory is used 
as a solution to the problem of cooperative game the-
ory. The main drawback of the nucleolus theory is that 
it is not monotonous, and the incentives for each DG 
owner are compared using wholesale market price ( �t ) 
directly. This form of calculation gives each DG owner 
more incentives, but reduces the income of the DG 
owner for some time.

In this paper, the Shapely Value Cooperative Game 
Theory (SVCGT) based iterative method is proposed. 
This is an improved version of the method in [17]. Pur-
suant to the proposed method, the Shapely Value solu-
tion concept, which is not monotonic as opposed to 
nucleolus, is used to find the share of each DG unit in 
loss and emission reduction. The incentives for each 
DG are then calculated by distributing the financial sav-
ings of DISCO because of loss and emission reductions. 
This improved method also includes all the features of 
the comprehensive method proposed in [17]. SVCGT is 
used for the first time to compute LMP based on active 
power loss and emission reduction, and the proposed 
method can benefit the DISCO in the following ways. It:

•	 Can simultaneously run the network with optimal 
active power loss and emission;

•	 Can sustain fair competition between private DG 
owners;

Table 1  Comparison of LMP computation features

Research contribution Different features addressed researchers Approach

A B C D E F G H K L M

[5]
√ √

Marginal Loss Coefficients

[13]
√ √ √

Reconciliated Marginal Loss Coefficients

[14]
√ √

Maximizing DISCO profit

[15]
√ √ √ √ √ √ √

Shapley Value Method

[16]
√ √

Sensitivity Factors

[17]
√ √ √ √ √ √ √ √ √ √ √

Nucleolus Theory

[18]
√ √ √ √ √ √ √ √ √ √ √

Proportional Nucleolus Theory

[19]
√ √ √ √ √ √ √ √ √

Proportional Nucleolus Theory

[20]
√ √ √ √ √ √ √

Hybrid GA-Dragonfly Algorithm

[21]
√ √ √ √ √ √ √ √ √

Point Estimation Method

Proposed method
√ √ √ √ √ √ √ √ √ √ √

Shapley Value Method
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•	 Can monitor private DG owners on the matching 
between the injected power from the DG units into 
the network and the computed generation on the 
basis of priority between loss and emission reduction.

The main contributions of this paper are:

•	 New mathematical modeling is developed to com-
pute the incentives for DG owners;

•	 Incentives for DG owners are calculated on the basis 
of DISCO’s financial savings due to loss and emission 
reduction:

•	 The Shapely Value method is used to identify the 
contribution of each DG unit to the reduction of loss 
and emission.

The problem formulation and methodology are provided 
in Sect. 2, while the discussion on simulation results and 
the effectiveness of the proposed method are in Sect. 3, 
Finally, conclusions are drawn in Sect. 4.

2 � Problem formulation and methodology
The problem addressed in this paper is on the computa-
tion of LMP at DG buses in a radial distribution system 
based on loss and emission reduction, and is approached 
from the two aspects of :

•	 Allocation of share of each DG unit in loss and emis-
sion reduction from the base case using the Shapley 
method

•	 Calculation of incentives based on the share of each 
DG unit in loss and emission reduction from the base 
case.

2.1 � Load Forecasting
In order to estimate the LMP at each hour of the next 
day, it is necessary to predict the corresponding load at 
each period. Two layers of the Artificial Neural Network 
(ANN) are used to predict the load, with the expected 
load of L(i, D) considered to be the output, as shown in 
Fig. 1. As seen, ANN is designed and trained to predict 
load L(i, D) based on the loads in the previous four hours 
and at the same hour in the previous two days. How-
ever, the forecasted price is considered from [22]. A Back 
Propagation Algorithm (BPA) is used to train the ANN 
because of its flexibility and, learning capability, and is 
highly suitable for problems with no relationship between 
output and input [23]. The efficiency of the ANN is meas-
ured in terms of MAPE and RMSE [24–26]. A stochastic 
gradient descent approach is used to train the model, and 
the training dataset consists of 6644 samples and the test-
ing dataset consists of 24 samples.

2.2 � Calculation of loss reduction
To calculate the loss reduction, an efficient load flow 
solution must be run with a projected load of L(i, D) in 
two cases as:

•	 Base case: Distribution network without DG
•	 Case2: Distribution network with DG

We use the backward and forward load flow solution 
[27] as it takes full advantage of the ladder structure of 
the distribution network to achieve high speed, robust 
convergence and low memory requirements [28, 29]. 
Before running the load flow for Case2, the genera-
tion of each DG unit based on the active power price 
and base case loss reduction are calculated respectively 
using:

2.3 � Computation of emission reduction
Emission in the base case is computed based on the load 
on the substation bus and the emission coefficients corre-
sponding to the substation bus as shown in (3), whereas 
emission in Case 2 is computed based on the power 
injected from the substation bus and generators, the 
emission coefficients for the substation bus and DG units 
as shown in (4). Emission reduction of case 2 from the 
base case is shown in (5).
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Fig. 1  ANN architecture
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The emission penalty for DISCO in the base case and in 
Case 2 are calculated using (6) and (7), respectively, while 
financial saving for DISCO due to emission reduction 
from base case is computed using (8), i.e.:.
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2.4 � Shapley Value Method
The Shapley Value (SV) method [30] is used to allocate the 
share of each DG in loss and emission reduction shown 
in (2) and (8), respectively. The assignment of the share in 
reduced loss and emission among all DG units is carried 
out using:

where, for reduced loss allocation, k=l, and for reduced 
emission allocation, k=e.

The allocation of the share of each DG in loss reduction 
can be explained by sample calculations. Considering a dis-
tribution system with three distributed generators and a 
basic case loss of 220 kW, Table 2 shows the loss reduction 
due to each DG unit coalition as shown in [18].

The share of each DG unit in loss reduction computed as 
in (9) is shown below:

(9)
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As seen, shares of the DGs in loss reduction when all 
units participated in coalition are 33.0kW, 51.9kW and 
27.2kW, respectively. This leads to a total loss reduction 
of 112.1kW as shown in Table 2. A similar share of each 
DG in emission reduction can also be computed using 
the SV method.

2.5 � DISCO’s Extra Benefit
DISCO’s extra benefit is defined as the difference 
between DISCO’s benefit with and without DG units. 
DISCO’s benefit without DG is defined as the difference 
between the amount paid to obtain power from the main 
grid and the emission penalty and the revenue collected 
from customers. Similarly, DISCO’s benefit with DG is 
the difference between the amount paid to obtain power 
from the main grid and DG units, the emission penalty 
and the revenue collected from customers. Thus, DIS-
CO’s benefit with DG, DISCO’s benefit without DG and 
DISCO’s extra benefit can be calculated respectively as:

(10)
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Similarly, DISCO’s extra benefit in the presence of DG 
units due to loss and emission reduction can be mini-
mized by providing incentives to DG owners.

In the case that DISCO provides power to custom-
ers from low emission coefficient generators, customers 
will pay a lower energy price because of a lower emission 
penalty. Similarly if customers receive power from high 
emission generators a higher energy price will have to 
be paid. As both customers and generators must share 
emission penalty, the emission penalty sharing factor ωe 
is considered as 0.5 here in this paper, indicating equal 
sharing between the generators and customers.

2.6 � SVCGT based iterative Algorithm
The computation of LMP at each DG bus using the Shap-
ley Value method, based on loss and emission reduction 
is explained in the iterative algorithm.
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Table 2  Loss reduction for different coalitions

Coalition (C) Loss due to coalition 
in kW

Loss reduction 
due to coalition 
in kW

1 207.3 12.7

2 185.3 34.7

3 205.4 14.6

1,2 150 70

1,3 179.2 40.8

2,3 163.3 56.7

1,2,3 107.9 112.1

Table 3  DG units cost coefficients

Type Coefficient of DG unit’s cost function

a ( $/MW
2) b ( $/MW) c ($)

1 5.8 21 0

2 5.3 20 0

3 5.0 20 0

Table 4  DG unit’s emission coefficients

Type Coefficient of DG unit’s cost function

CO2 (kg/MW) SO2 (kg/MW) NOx (kg/MW) CO (kg/MW)

1 695 1.25 2.13 2.8

2 477 0.024 0.015 0

3 625 0.032 0.29 0.42

Substation 965 5.64 1.7 0.07

Table 5  DG units type and location in TPC distribution system

Type 1: Combined cycle gas turbine

Type 2: Gas internalcombustion engine

Type 3: Diesel internal combustion engine

Unit Type Location Unit Type Location

1 1 4 9 2 20

2 1 65 10 2 47

3 1 25 11 3 11

4 1 35 12 3 60

5 1 84 13 3 41

6 2 55 14 3 30

7 2 12 15 3 76

8 2 72
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3 � Simulation results
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The proposed SVCGT based iterative method for LMP 
computation at DG buses is simulated on the Taiwan 
Power Company (TPC) distribution system consist-
ing of 84 buses and 15 DG units. Complete data of the 
TPC distribution network has been considered from 
[32]. Cost coefficients of each type of DG are shown in 
Table 3., and emission coefficients are shown in Table 4. 
With the assumption that all 15 DG units with 1MW 
capacity are operated with 0.9 leading power factor 
and are placed in the network as shown in Table 5, the 
proposed algorithm is simulated in MATLAB [33] on 
a i5-5200U computer having 2.25GHz processing speed 
and 8GB RAM. The computer takes less than 1 hour to 
run the full algorithm.

All simulation results are based on forecasted load as 
shown Fig.2, with realistic price data taken from [22] 
and the penalty for each greenhouse gas emission con-
sidered from [34].

3.1 � Impact of ω1 and ω2 on DG unit’s generation
Fig.3 shows the impact of ω1 and ω2 on active power 
generation of each DG unit at a market price of 24.95 $/

MW. Active power generation from low emission coeffi-
cient generators is higher than that from the remaining 
generators when ω2=0.75. This means that DISCO’s deci-
sion maker gives more priority to emission reduction, 
and hence generators having high positive impact on 
emission reduction increase their generation. As shown 
in Fig.3, active power generation from all Type 2 genera-
tors (DG 6-10) increases, as the weight corresponding 
to emission reduction ω2 is increased from 0.25 to 0.75. 
Similarly, as ω1 increases from 0.25 to 0.75, generators 
having positive impact on loss reduction increase gen-
eration. As can be seen from Fig.3 generation of DG11 is 
highest when ω1=0.75, and decreases with ω1 decreasing 
from 0.75 to 0.25, indicating that DG11 has high impact 
on loss reduction. As the generation of each DG unit is 
based on its contribution to loss and emission reduction, 
DISCO’s decision maker prioritizes among loss reduc-
tion, emission reduction and DISCO’s extra benefit.

3.2 � Impact of ω1 and ω2 on DG unit’s LMP
Fig.4 presents LMP values of each DG unit for differ-
ent values of ω1 and ω2 at a market price of 24.95 $/MW. 
DISCO’s decision maker increases priority for loss reduc-
tion by increasing ω1 . Consequently, DG units having 

Fig. 2  Forecasted load for TPC distribution system

Fig. 3  Impact of ω1 and ω2 on the DG unit’s generation

Fig. 4  Impact of ω1 and ω2 on the DG unit’s LMP

Fig. 5  Impact of ω1 and ω2 on the DG unit’s reactive power price
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positive impact on loss reduction receive more incen-
tives and more LMP than the remaining DGs. For exam-
ple the LMP value of DG11 increases as ω1 changes from 
0.25 to 0.75 and receives a high LMP value of 27.17$/
MW, because of its large contribution to loss reduction. 
Similarly, as the ω2 value increases from 0.25 to 0.75, 
DGs having positive impact on emission reduction such 
as the Type2 DGs receive more incentives and get high 
LMP, e.g. DG6, DG7, DG8, DG9 and DG10. The LMP 
value of each DG unit from any particular value of ω1 and 
ω2 is dependent on it’s contribution to loss and emission 
reduction, the priority of DISCO’s decision maker pri-
ority among loss and emission reduction, and DISCO’s 
extra benefit.

3.3 � Impact of ω1 and ω2 on a DG unit reactive power price
The impact of ω1 and ω2 on Reactive Power Price (RPP) of 
each DG unit at a market price of 24.95 $/MW is shown 
in Fig.5. The RPP of each DG unit is based on the con-
tribution of generated reactive power in loss reduction. 
DG11 has higher impact on loss reduction than the oth-
ers, and receives more incentives and obtains a higher 
price for reactive power generation. As DISCO’s decision 
maker increases priority for loss reduction by increasing 
ω1 , incentives to each DG unit increase based on con-
tribution to loss reduction leading to an increase in the 
reactive power price.

3.4 � Impact of ω1 and ω2 on the active power loss 
of network

Fig.  6 shows the variation of losses with respect to ω1 
and ω2 at a market price of 24.95 $/MW. Increasing ω1 
represents DISCO’s decision maker increasing the prior-
ity for loss reduction. Hence, losses of network decrease 
with higher ω1 value, because of the increase in genera-
tion of DG units which have high positive impact on loss 
reduction.

3.5 � Impact of ω1 and ω2 on the emissions of the network
Fig. 7 shows the change in emission of the network with 
respect to ω1 and ω2 at a market price of 24.95 $/MW. 

An increase in the ω2 value represents DISCO’s deci-
sion maker increasing the priority for emission reduc-
tion. Hence, emission from the network decreases by an 
increase in the ω2 value because of increase in generation 
of low emission coefficient DG units which have high 
positive impact on emission reduction.

3.6 � DISCO’s extra benefit for different market price ( �t)
Fig. 8 shows the variation in DISCO’s extra benefit with 
respect to iterations in the proposed algorithm for dif-
ferent market prices at ω1=0.5 and ω2=0.5. Zero extra 
benefit is required to maintain fair competition in a 
deregulated environment. From Fig. 8, it can be seen that 
the proposed method provides zero extra benefit at all 
market prices.

3.7 � Comparison in terms of active power loss at ω1=0.5 
and ω2=0.5

The proposed method is compared with the nucleolus 
theory-based iterative method in [17] in terms of active 
power loss of the network. As shown in Table  6, at the 
hours of the day when the market price ( �t ) is less than 
the ‘b’ coefficients of all DG units the active power losses 
of the network are the same with both methods. How-
ever, at remaining hours of the day active power losses 

Fig. 6  Impact of ω1 and ω2 on active power loss of network

Fig. 7  Impact of ω1 and ω2 on emission of network

Fig. 8  Variation of DISCO’s extra benefit at different market price
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are less in the proposed method than the nucleolus the-
ory-based iterative method.

3.8 � Comparison in terms of emission at ω1=0.5 and ω2=0.5
Table  7 compares emission released from the network 
with the proposed method and the nucleolus theory-
based iterative method. At some hours of the day both 
methods provide the same emission, because of the 
wholesale market price ( �t ) being less than the ‘b’ coef-
ficient of all DG units at those hours. As a DG unit will 
only generate power if the LMP/wholesale market price 
is greater than its bi coefficient. all DG units are off under 
such condition and the network is the same as the base 
case. However, at other hours of the day, the proposed 
method operates the network with lower emission than 
the nucleolus-based iterative method.

3.9 � Comparison in terms of DG benefit at ω1=0.5 and ω2

=0.5
Fig.  9 compares the DG benefits calculated as the dif-
ference between the total amount paid by DISCO to 
generate power and generation cost, with the proposed 
and nucleolus theory based iterative methods at a mar-
ket price of 26.9 $/MW. As seen, the proposed method 
provides more benefits to generators than the nucleolus 
theory-based iterative method.

4 � Conclusions
This paper proposes an SVCGT based iterative method 
for estimating LMPs in DG buses. The LMP value for 
each DG bus is calculated on the basis of DG’s contri-
bution to loss and emissions reduction. DISCO’s addi-
tional benefit is computed effectively in each iteration 
using LMP, generation and emission penalty. Two ANN 

Table 6  Comparison in terms of active power loss (MW)

Hour Nucleolus based iterative 
method

Proposed method Hour Nucleolus based iterative 
method

Proposed method

1 0.4047 0.4047 13 0.1999 0.1798

2 0.4013 0.4013 14 0.2172 0.1909

3 0.3984 0.3984 15 0.2048 0.1829

4 0.4022 0.4022 16 0.1852 0.1764

5 0.4057 0.4057 17 0.1842 0.1774

6 0.3717 0.3236 18 0.1921 0.1823

7 0.2900 0.2516 19 0.2107 0.1916

8 0.4437 0.4437 20 0.3105 0.2701

9 0.4517 0.4517 21 0.3337 0.2903

10 0.2891 0.2512 22 0.3184 0.2767

11 0.2804 0.2437 23 0.4547 0.4547

12 0.2416 0.2107 24 0.4384 0.4384

Table 7  Comparison in terms of emissions (kg)

Hour Nucleolus based iterative 
method

Proposed method Hour Nucleolus based iterative 
method

Proposed method

1 24,593 24,593 13 21,463 20,865

2 24,490 24,490 14 21,979 21,333

3 24,404 24,404 15 21,626 21,010

4 24,517 24,517 16 21,004 20,749

5 24,623 24,623 17 21,009 20,840

6 24,298 23,630 18 21,331 21,050

7 23,176 22,517 19 22,030 21,470

8 25,723 25,723 20 24,283 23,600

9 25,949 25,949 21 24,576 23,892

10 23,466 22,799 22 24,156 23,479

11 23,345 22,678 23 26,032 26,032

12 22,553 21,895 24 25,573 25,573
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layers are used to predict load in the next 24 hours based 
on the load of the previous four hours and at the same 
hours in the previous two days. The proposed method is 
developed using the Shapley Value (SV) method, which is 
monotonous and different to the nucleolus solution con-
cept, and is one of the solutions to the problem of coop-
erative game theory.

The decision-maker of DISCO can use the proposed 
method as a control tool for privately owned DG units to 
help DISCO to operate the network optimally in terms of 
loss and emission. The proposed method can also help to 
estimate the status of the network in terms of generation 
of DG units with controllable additional benefits.

This method can be extended by considering technical 
objectives such as improvement of reliability and quality 
of service. The proposed work can also be extended by 
using the Aumann-Shapley method instead of the Shap-
ley method as the latter requires more computation time. 
As the integration of DG units into the distribution net-
work is expected to increase in the future, the proposed 
work can help to resolve issues related to the planning 
and operation of the distribution network.

List of symbols
(Πt

a
)
j

i
: Active power price for unit DG i at hour t and iteration j ($/MW); (Πt

r
)
j

i
: Reactive power price of DG ‘i’ at hour ‘t’ and iteration ‘j’ ($/MVar); (PGt )

j

i
: Active 

generation of the DG unit i at hour t and iteration j (MW); (QGt )
j

i
: Reactive 

power generated by DG ‘i’ at hour ‘t’ and iteration ‘j’ (MVar); Δbenefitt
j
: DISCO’s 

extra benefit at hour ‘t’ and iteration ‘j’ in ($); ΔEC: Change of the total emission 
penalty from the base case ($); ΔEmn: Change in emissions from the base 
case (kg); ΔPmax: Maximum change in generation (MW); ΔPloss: Change 
of active power loss (MW); �1: Weight corresponding to loss reduction; �2

: Weight corresponding to emission reduction; �e: Weight corresponding to 
share of DISCO in emission penalty; Φi(k): Share of DG unit ‘i’ in loss(k = l)/
emission(k = e) reduction; Πc: Energy price for customers in ($/MW); ai,bi,ci
: Cost coefficients of DG unit i; C: Coalition of DG units; CODGi: Amount of CO 
released from DG unit ‘i’ (kg/MW); COSub: Amount of COsub released based on 
substation bus load (kg/MW); CODGi

2
: Amount of CO2 released from DG unit ‘i’ 

(kg/MW); COSub

2
: Amount of CO2 released based on substation bus load (kg/

MW); cosdgi: Power factor of DG ‘i’; DGgaini
P
: Financial incentive to DG ‘i’ for 

generation of active power in ($); DGgaini
Q

: Financial incentive to DG ‘i’ for 
generation of reactive power ($); DGgaini

Emn
: Financial incentive to DG ‘i’ for 

contribution in emission reduction ($); DGgaini
loss

: Financial incentive to DG ‘i’ 
for its contribution in loss reduction ($); Emn

t

0
: Green house gas emissions in 

the base case at hour t (kg); Emn
t

DG
: Green house Gas emission from network 

with DG units at hour t (kg); L(t, D): System load at hour t of day D (MW); NDG

: Number of DG units in network; NODGi

x : Amount of NOx released from DG unit 
‘i’ (kg/MW); NOSub

x
: Amount of NoSub

x
 released based on substation bus load (kg/

MW); PCO2
: Penalty for the emission of CO2 in ($/kg); PCO: Penalty for emission of 

CO in ($/kg); PNOx
: Penalty for the emission of NOx in ($/kg); PSO2

: Penalty for the 
emission of SO2 in ($/kg); Plosst

0
: Base case active power loss at hour t (MW); 

Ploss
t

DG
: Active power loss of the system with a DG unit at hour t (MW); Plosst

j
: System loss with DG units at hour ‘h’ and iteration ‘j’; SODGi

2
: Amount of SO2 

released from DG unit ‘i’ (kg/MW); SOSub

2
: Amount of SO2 released based on 

substation bus load (kg/MW); vk (C): Loss(k = l)/emission(k = e) reduction due 
to coalition C; vk (C − i): Loss(k = l)/emission(k = e) reduction due to coalition 
C with out DG ‘i’; benefit0

t: Base case DISCO’s benefit at hour ‘t’ in ($); benefitj
t: 

DISCO’s benefit with DG at hour ‘t’ and iteration ‘j’ ($); EC0
t: Green house Gas 

emission penalty at hour h in the base case in ($); ECDG
t: Green house Gas 

emission penalty at hour h with the DG units in ($); ECj
t: Emission penalty for 

network at hour ‘t’ and iteration ‘j’ in ($); Emnj
t: Emission from network at hour 

‘t’ and iteration ‘j’ in kg; MAPE: Mean Absolute Percentage Error; RMSE: Root 
Mean Square Error; xEmn(i): Share of DG ‘i’ in emission reduction (kg); xLoss(i): 
Share of DG ‘i’ in loss reduction (MW).
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