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Abstract

With the increase in the proportion of multiple renewable energy sources, power electronics equipment and new
loads, power systems are gradually evolving towards the integration of multi-energy, multi-network and multi-
subject affected by more stochastic excitation with greater intensity. There is a problem of establishing an effective
stochastic dynamic model and algorithm under different stochastic excitation intensities. A Milstein-Euler predictor-
corrector method for a nonlinear and linearized stochastic dynamic model of a power system is constructed to
numerically discretize the models. The optimal threshold model of stochastic excitation intensity for linearizing the
nonlinear stochastic dynamic model is proposed to obtain the corresponding linearization threshold condition. The
simulation results of one-machine infinite-bus (OMIB) systems show the correctness and rationality of the predictor-

condition

corrector method and the linearization threshold condition for the power system stochastic dynamic model. This
study provides a reference for stochastic modelling and efficient simulation of power systems with multiple
stochastic excitations and has important application value for stability judgment and security evaluation.
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1 Introduction

Driven by energy reform and emerging technologies, the
trend of the “three highs” (high proportion of renewable
energy source grid connection, high proportion of power
electronics equipment and high proportion of new loads)
and “three multiples” (multiple energy sources, multiple
networks and multiple subjects) in smart grids is grad-
ually accelerating [1]. This not only creates huge eco-
nomic benefits for power systems but also brings large
numbers of random factors to the systems. The input of
a large number of random factors is a new challenge for
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safety and stability [2, 3]. The system security problems
caused by random factors have been of considerable
concern to the industry [4, 5]. The establishment of an
effective power system stochastic dynamic model and al-
gorithm is the basis for a system safety and stability ana-
lysis influenced by random factors [6].

Although there always existed random factors in
power systems, in the past they have not become im-
portant factors affecting the safe and stable operation of
the system, and thus were usually ignored. With the in-
crease of new energy penetration and the proportion of
new load access, the random factors have become the
key factors influencing security and stability, and can no
longer be ignored. Random factors are mainly made up
of three types, ie., randomness of the initial values, of
parameters and of external excitations [7]. The
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randomness of the initial value is caused by a change of
power flow before and after the power system is dis-
turbed. The randomness of parameters is caused by the
changes of operating state and internal topology of the
equivalent model. The causes of external excitation
randomness include the randomness of new energy
power generation, of network events, of variable loads
and of external interference in regional intercon-
nected power grids etc. In a certain dynamic process
of a power system, the randomness of the initial
values and parameters are considered constants, and
these can be examined using probability methods.
However, the randomness of external excitations
changes rapidly and is time-varying in the dynamic
process, and thus stochastic differential equation the-
ory is necessary for modelling and analysis [8, 9].

In a power system, a stochastic differential equation
can accurately describe the dynamic process and oper-
ational characteristics of the system and establish a more
realistic stochastic dynamic model of the power system
[10]. Based on the deterministic model, random variables
describing random factors of the system are usually in-
troduced to establish the stochastic dynamic model of a
power system to study its stability [11]. In the process of
operation, the dynamic process of external excitation is
considered to be a stochastic process. In much engineer-
ing practice, external stochastic excitation is generally
considered Gaussian white noise with a stable independ-
ent increment and zero mean value [12], and a linear
stochastic dynamic model of a power system is used to
conduct the relevant research [13-15]. However, actual
power systems are multi-dimensional complex and non-
linear dynamic systems [16]. When the stochastic excita-
tion intensity near a node in the system is relatively
large, the results obtained using a linear stochastic dy-
namic model for analysis may have relatively large er-
rors. Therefore, it is necessary to use a nonlinear
stochastic dynamic model of the power system [17-19],
one which can describe the dynamic process of the sys-
tem more aptly. The stability of the system can be ana-
lyzed by using the nonlinear stochastic dynamic model
for more accurate conclusions.

The solution of a stochastic dynamic model of a power
system is the premise of system stability analysis. How-
ever, in general, it is difficult to obtain the analytic solu-
tions of stochastic differential equations and only under
some special circumstances can the exact analytic solu-
tion expression be obtained [20]. Therefore, an appropri-
ate numerical method is constructed to obtain the
trajectory of the solution process so as to approximate
the true solution [21, 22]. Commonly used numerical
methods for solving linear and nonlinear stochastic dif-
ferential equations include the Euler-Maruyama [23],
Milstein [24], and Runge-Kutta methods [25], etc.
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Among them, the predictor-corrector algorithm for sto-
chastic differential equations is not only easy to calculate
but also has high stability [26], and is thus suitable. The
method has a simple solution process and high compu-
tational efficiency for the linear case, but it also has a
complex solution process and low computational effi-
ciency in solving nonlinear stochastic dynamic models.
In [13], a nonlinear model is approximately converted to
a linear model to reduce the complexity of the subse-
quent solving. However, the linearization process ignores
the influence of the nonlinear characteristics of the sys-
tem, so stability analysis deviation will occur when the
stochastic excitation of a power system increases.

A stochastic small disturbance generally refers to the
fluctuations of loads and parameters (such as the switch-
ing of small-capacity load). Because of the small stochas-
tic excitation, the stability analysis of a system with such
small disturbances is often approximated by linear
models, and the methods include the Monte Carlo and
stochastic response surface methods. A stochastic large
disturbance is a sudden change of large-capacity load
(such as switching of large-capacity load, switching of
main system components, or component failure). For
such a large disturbance, a nonlinear model is needed,
and its stability analysis methods include the extended
equal area and pseudo-Hamiltonian system stochastic
average methods [1]. With the increase of new energy
penetration, grid-friendly load and flexible load ratio
(double highs), stochastic factors and stochastic excita-
tion intensity increase. Stochastic excitation intensity
caused by load and parameter fluctuations may become
a large disturbance. Under such conditions, the distinc-
tion between a stochastic small and large disturbance is
no longer clear. This brings difficulties to the choice of
linear or nonlinear models for the analysis. Most existing
studies focus on the stochastic excitation threshold indi-
cating whether or not the system is unstable [27]. There-
fore, it is necessary to study the stochastic excitation
intensity thresholds of the linear and nonlinear models.

For a power system under the action of stochastic excita-
tions of different intensities, this paper studies the stochas-
tic excitation threshold conditions that can be used to
linearize a nonlinear stochastic dynamic model and select
the stochastic dynamic model of the power system, while
ensuring the accuracy of both the model and solution. Fur-
thermore, the influence of the stochastic dynamic model
linearization on stability analysis is analyzed quantitatively.

The main contributions of this paper can be summa-
rized as follows. (1) The Milstein-Euler predictor-
corrector method for power system stochastic dynamic
models is constructed. This improves the stability of the
algorithm and provides new ideas for solving the stochas-
tic dynamic models. (2) A threshold discrimination basis
for linearizing nonlinear power system stochastic dynamic
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models is proposed. This avoids the deviation of stability
analysis caused by the linear model solution method when
the linearization condition of the stochastic dynamic
model is not satisfied. It shows the influence of different
stochastic excitation intensities on model selection and
stability analysis, and provides a reference for power sys-
tem stochastic modelling and efficient simulation.

The rest of the paper is organized as follows. The sto-
chastic dynamic model of a power system is established in
Section 2 and the Milstein-Euler predictor-corrector
method is described in Section 3. The stability of the
predictor-corrector method is analyzed in Section 4, the
optimal threshold model of stochastic excitation intensity
is established and its stability is analyzed in Section 5. The
threshold value of stochastic excitation intensity is deter-
mined, and the stability of stochastic excitation intensity
above and below the threshold value is analyzed in Section
6. Finally, the paper is concluded in Section 7.

2 Stochastic dynamic model of power systems

2.1 Nonlinear stochastic dynamic model of power
systems

A stochastic dynamic model of a power system is con-
structed by adding a stochastic excitation term based on
a deterministic model. To simplify the calculations, im-
prove operational efficiency and eliminate the interfer-
ence of other factors in drawing correct conclusions, the
most representative OMIB system is often used for mod-
elling and analysis [28]. In such a system, the determin-
istic model is an equation describing the rotor motion
as:

d*s dd

Mdt2+Ddt—Pm_Pe (1)
where P, = EUsind/Xs, P,,=P, (0)=E Usindo/Xs, M, ,
D, P, P,, E, and 8, are the inertia time constant, power
angle, damping coefficient, electromagnetic power,
mechanical power, internal potential and initial power
angle of the generator respectively. ¢ is time, U is the in-
finite bus voltage and Xj is the total reactance of the sys-
tem. Assuming P,, is constant, it can be seen from the
steady-state power balance condition that its value is
equal to the steady-state value of P,.

Power fluctuation in a power system caused by external
stochastic excitation such as new energy generation and
load fluctuates around a certain mean value in a relatively
short time. This can be regarded as a Gaussian white noise
process with a stable independent increment [12]. There-
fore, a stochastic excitation item is added to the right side
of (1) to construct the stochastic dynamic model, as:

d*s dd
MﬁJrDE:Pm—Pe + oW (t) (2)
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where o is the stochastic excitation intensity and W(¢) is
the stochastic excitation modelled as a standard Gauss-
ian white noise process. Stochastic excitation is generally
regarded as the stochastic fluctuation of new energy gen-
eration power, load, etc.

The general stochastic differential equation is driven
by Brownian motion (also called the Wiener process),
while the stochastic dynamic model in this paper is
driven by Gaussian white noise. Therefore, it is neces-
sary to convert Gaussian white noise to the form of
Brownian motion to establish the final differential equa-
tion model. From stochastic differential equation theory,
the derivative of Brownian motion B(¢) is characterized
by Gaussian white noise, as:

dB(t)
— =W 3
L= w 3)
According to (3), the nonlinear stochastic dynamic
model of the power system is obtained as [19]:

P, EU D
0 =w-wyw-=—- sind— — (w-wo)
M MXs M
+Zw() (4)
M

where w and wq are the generator speed and its initial
value respectively. The vector form of (4) is:

dX(t) = F(X(¢))dt + G(t)dB(t) (5)
where F(X(t)) = p_m_ﬁ’)? S?;_(;io% (co—wo)> , X(®)
=<Z> and G(¢) = Aj/\g) ’

Because (5) presents strong nonlinear characteristics,
it is difficult to find its analytic solution.

2.2 Linearization of stochastic dynamic model of power
systems

By linearizing (4), a linear stochastic dynamic model of
the power system is obtained as [13]:

E Ucosé, D
_ D900 N Z A
g Dot

+ W) (6)

AS- = AwAw- =

The corresponding vector form of (6) is:

dX(t) = AX(t)dt + Q(¢)dB(¢) (7)

AS 0 1
where X(¢) = (Aw)’A (_5[’)%12 c0sSy _%>,andQ

- ()

The explicit expression of the analytic solution of (7)
is:
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X(t) = A0 X (to) + /0 teA(H)Q(s)dB(s) (8)

3 Algorithm construction

3.1 Construction of predictor-corrector methods for a

nonlinear stochastic dynamic model

For the nonlinear stochastic dynamic model of the

power system shown in (5), the Milstein-Euler

predictor-corrector method is constructed to carry out

the numerical discrete process of the model as follows.
Use the explicit Milstein method to obtain the pre-

dictor scheme, as:

Xui1 = X + F(X,)At + G(X,) AB+
1 , ) (9)
5 G(XVI)G (Xn) (ABn_At)

Use the implicit Euler method to get the corrector
scheme:

1 —~

Xur1 =X +3 [F(X,M) n F(Xn)} At+
1 —~

> {G (Xm) + G(Xn)] AB,

(10)

where n=1,2, ...,L, At=T/L, AB, ~ (VA)N (0,1), and N
(0,1) is the standard normal distribution. For a positive
integer N', At=T/N', t, = kAt, 8 =8 (t), we= o (t), and
k=012, ..,K. The specific coefficients in (5) are
substituted into (9) and (10) to yield its predictor
scheme:

Oky1 =0k + ((l)k,—(l)O)At
P,

@1 = Ok + M”’At— MK sindrAi— (11)
/\2/[ (@r-w0)Af + }%ABk
and its corrector scheme:
Ors1 = Ok —l—% [(5k+1—w0) + (wk—wo)]At
Wkl = @) +%At—%}%( sin§/(+1+ (12)

. 1D -
sindx ) At- ¥, [(o)k+1—w0)+

o
(wr—wo)]AL + 21 2Bk

3.2 Construction of predictor-corrector methods for linear
stochastic dynamic model

For the linear stochastic dynamic model shown in (7),
the Milstein-Euler predictor-corrector method is con-
structed to carry out the numerical discrete process of
the model as follows.
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Use the explicit Milstein method to get the predictor
scheme, i.e.:

Xui1 = Xu + (AX,)) A + Q(X,)AB+

1 , (13)
5 Q(X}’I)Q (Xn) (AB;%I_At)

Use the implicit Euler method to get the corrector
scheme:

1 —
Xnit = X+ [ (W) + (4X,)| Bt

(X)) + @] as,
where n=1,2, ...,.L, At=T/L, AB,,~ (VA)N (0,1), and N
(0,1) is the standard normal distribution. For a positive
integer N', At=T/N, t; = kAt, 8 =0 (t), wx = (), and
k=012, ..,K. The specific coefficients in (7) are
substituted into (13) and (14) to obtain its predictor
scheme:

(14)

A§k+1 = Alx + AwiAt

cosdq - Ao At—

~ EU
Awr = Bor— (15)

h)

D o
— AwiAt +—AB
o Wy JrM k

and its corrector scheme:

1, ~
A6k+1 = Aak + E (Awk+1 + Awk)At

1
Awpy1 = Awg- 3

1D, - o
EM (Awk+1 + A&)k) + MAB](
6 = 0o + Abxs1

® = @y + Awgyr

E —
u cosdy - (A5k+1 + A6k) At-
b3

(16)

4 Algorithm stability analysis

According to (5) and (7), the coefficients (F(X(£)), AX())
and (G(t), Q(¢)) respectively satisfy the consistent Lip-
chitz condition and linear growth condition [29], as:

| E(X1(£)-F(Xa(8)) | v | GX1 ()~
G(Xa(£)) | <Ly | X2(6)-Xs(t) | .

| AX, (£)-AXa(t) | v | QX1 (1))~ (17)

Q,(X(0)) | <Li | X1 (£)-Xa(0) |

| EX(2) | v | GIX(0) | <Ky |1+ X(8) |

|AX(0) | v | QX(8) | <Ky | 1+X(2) | (18)

where V represents the OR operation, L; and K; are both
normal numbers, and the absolute values of the deriva-
tive of G(£) in (5) and Q(¢) in (7) are less than the con-
stant M, The increment functions ¢ and y of the
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Milstein-Euler predictor-corrector method in (9), (10),
(13) and (14) are:
F(X,)At + G(X,)AB+

1 !

2 G(Xn)G (Xu) (Asz_At) )
(AX,)At + Q(X,,)AB+

1 /
iQ(Xn)Q (Xn)(ABi_At)v
n=12..L

(19)

% {F()”(,m) + F(X,,)}At—i—
S [6(Xn) + 60x)] 88,
KA}?,,H) + (AX,,)} At+

2R + Qe a8,
n=12,..L

(20)

N =

while ¢ and ¥ meet the following conditions:

|E(h(AL,61,1p) = (A1, 62,14)) | <

CiAt | §-&y | @)

E(‘¢<At7 5151¢)_¢(At7 625141)’2) <
o] -6,

|E((//(At7'517’71all//)_(//(At7£27’72’1‘//)) | <
C3AL(|§1-Eo| + |r1-112)

(22)

(23)

E(“//<At7 617 Wlalw)_(//(Ata€27’127I!//)|2> <

(24)
C4At(|51—52\2 + ”71"72‘2)

E(|p(at61.1p) ) <Kot (1+16:) (25)

E(’(//(At, 1,mu1y) |2> sI(BAt(l 16+ 1171]2)
(26)

where C;, C,, Cs, C4, K, and K are all normal numbers,
while C; =Ly, Co=(6+3My/4) L2 1, C3=1,/2, C,=21L2
1, K3 =(6+3Mp/4) K2 1 and K3 =4. &, &, 51 and #, are
arbitrary real numbers, while I and I, are the integral
form of Ito . Note (1): My: G(¢) (0 and o/M) in (5) and
Q(¢) (0 and o/M) in (7) are constants, and the absolute
values of their derivatives are zero. Thus, M, can be any
constant greater than zero. The left side of the inequality
in (17) is an OR operation. G(¢) in (5) and Q(¢) in (7) are
constants, and subtracting the two equals zero. Thus, L;
can be any constant greater than zero. Similarly, the left
side of the inequality in (18) is also an OR operation.
G(t) in (5) and Q(¢) in (7) can take the values of zero
and o/M. Therefore, K; can be any constant greater than
o/M.
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In summary, the power system stochastic dynamic
model established in this paper satisfies the conditions
in (21) to (26), so the Milstein-Euler predictor-corrector
method in (9), (10), (13) and (14) is mean square zero
stable, that is, the constructed predictor-corrector
methods suitable for the power system are also mean
square zero stable. Although common numerical
methods such as Euler-Maruyama, Milstein, and Runge-
Kutta are mean square stable, the Milstein-Euler
predictor-corrector method constructed in this paper is
more stable than the above-mentioned methods.

5 Optimal threshold model and stability analysis
5.1 Optimal threshold model of stochastic excitation
intensity

Converting a nonlinear stochastic dynamic model to a
linear stochastic dynamic model results in certain errors,
and the linear conversion of a nonlinear stochastic dy-
namic model is only effective when the error is control-
lable. To obtain the discrimination basis of the
effectiveness indication of the linearization of a nonlin-
ear stochastic dynamic model, we establish the optimal
threshold model of stochastic excitation intensity. This
can be linearized by the nonlinear model according to
stochastic dynamic models in (5) and (7). The stochastic
excitation intensity threshold for effective linearization
of the model is the maximum allowed within the con-
trollable error range. Beyond this threshold, the error
will exceed the allowable range and the linearization of
the model is no longer effective. When the intensity does
not exceed the threshold, the nonlinear model can be
linearized and the stability of the system can be analyzed
using the linear model. Therefore, within the control-
lable error range, the objective function of the
optimization model is:

max
4

| Xnot(£)-X(2) | (27)
where X,,.(f) and X(¢) are the outputs of the state vari-
ables § of the nonlinear and linear models respectively,
while | X,,0(t)-X(2)| is the error between the two models.
Through optimization, the error is maximized, and the
corresponding stochastic excitation intensity threshold
0. is obtained.
The constraints of this optimization model are:

anot(t) = F(Xnot(t))dt + G(t)dB(t) (28)
dX(t) = AX(0)dt + Q(2)dB(t) (29)
| Aber | <AS. (30)

Equations (28) and (29) are the nonlinear and linear
models respectively, that is, the stochastic differential
equation constraints corresponding to o. Ad,, is the
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power angle error between X,.(f) and X(¢) (the error
cannot exceed Ad,.).

Note (2): The values of Ad,, vary due to different oper-
ating conditions, application scenarios, research goals
and error accuracy requirements. Accurate calculation
and analysis in a power system are conducive to system
security, stability and control. Therefore, when selecting
the upper boundary of error, the proposed method al-
lows the transformed linear system to fit the nonlinear
system and accurately describes the actual operation of
the system. By adjusting the upper bound of error, the
threshold model can also be applied to the stability ana-
lysis of small and large interference. The specific basis
for setting the upper error boundary will be further dis-
cussed in the follow-up research.

The objective function and constraints can be
expressed as the following constrained optimization
problem:

max | Xnot(8)-X(2) |

st dXao(t) = F(Xao(0))dt + G(1)dB(t)  (3y)
dX(¢) = AX(t)dt + Q(t)dB(t)
| Ader | <AS.

Under the constraints, the objective function is maxi-
mized to obtain the optimal threshold of stochastic exci-
tation intensity. The specific steps for solving the
optimal threshold model of the intensity are as follows.

1) Input a set of values of stochastic excitation
intensity o, and solve the output of the state
variables § corresponding to the constraints (28)
and (29) according to (11), (12), (15) and (16).

2) With the above-mentioned o, calculate the error of
the state variable § corresponding to (28) and (29),
namely Ade,.

3) Under constraint (30), the grid search method is
used to obtain the ¢ corresponding to (28) and (29).

4) Repeat the above 3 steps until the maximum
stochastic excitation intensity within the error
range is obtained. This is the intensity threshold o..

The threshold of stochastic excitation intensity o is
thus obtained. When o< ¢, the nonlinear stochastic dy-
namic model is linearized and the stability of the system
is analyzed using the linear stochastic dynamic model to
reduce computational complexity and improve simula-
tion efficiency. The nonlinear stochastic dynamic model
is used to analyze the stability of the system. By using
the optimal threshold model based on the Milstein-Euler
predictor-corrector method and the stochastic dynamic
model selection discrimination method proposed in this
paper, the rationality of stochastic power system
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[The nonlinear and linear stochastic dynamic]

models of smart grid is established

v

The predictor-corrector method for stochastic dynamic
model of smart grid is proposed for numerical discretization.

v

[ The optimal threshold model of stochastic j

excitation intensity is established

v

The grid search method is used to obtain the stochastic
excitation intensity threshold o

The linear stochastic dynamic
model is used for the analysis

The nonlinear stochastic dynamic model is
used for the analysis
Stability analysis of smart grid

Fig. 1 Stability analysis process

modelling is guaranteed while ensuring the accuracy of
the stability analysis.

5.2 Stability analysis process and method considering
excitation threshold

The stability analysis process of a power system is shown
in Fig. 1. It uses the constructed optimal threshold
model of power system stochastic excitation intensity
and the Milstein-Euler predictor-corrector method.

Table 1 Electrical parameters of the OMIB

Electrical quantity Parameter values

Pressor transformer reactance 0.138 pu
Double circuit bus total reactance 0.234 pu
Depressor transformer reactance 0.122 pu
Generator transient reactance 0.295 pu
Inertia time constant 8.18s
Damping coefficient 2.0 pu
Initial operation point Po=10pu, Qy=0.2 pu
Electromotive force 141 pu
Power angle initial 34.46°
Power reference value 220 MVA
Voltage reference value 209 kv
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/\ 2 Linear model
———————— Nonlinear model

«(s)

Fig. 2 Comparison of power angle curves between linear
and nonlinear models of the system (0= 0.234)

1)

2)

3)

4)

44

Considering the stochastic excitation factors of
different intensities outside the power system, the
nonlinear stochastic dynamic model and its
linearization model are established.

The Milstein-Euler predictor-corrector method pro-
posed in Section 3.1 and 3.2 is used to conduct nu-

merical discretization for the nonlinear and linear
models respectively.

According to (31), the optimal threshold model of
excitation intensity for linearizing the model of the

power system is established, and the stochastic

excitation intensity threshold o, is obtained by the

grid search method.
We compare the stochastic excitation intensity of
the system with the linearized excitation intensity

EM-Linear model
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37 T T T T

Linear model
———————— Nonlinear model | 7

|
=T
-y \

335 ’ / i 1

33 I i

325 ' 1

32 L L L L

1(s)

Fig. 4 Comparison of power angle curves between linear
and nonlinear models of the system(o = 0.05)

threshold o.. When o < ¢, the nonlinear model is
linearized and the stability of the system under
different stochastic excitation intensities is
quantitatively analyzed. When ¢ > o, the nonlinear
model is used instead.

5) Through the simulation of OMIB systems, the
change of the power angle ¢ is analyzed, and the
conclusion is drawn.

To apply the proposed method to a practical power
system stability analysis: first, the stochastic excitation
intensity is measured in the power system. Secondly,
compare the measured stochastic excitation intensity
with the excitation threshold. The corresponding sto-
chastic dynamic model is then established and solved.

Linear model

42 EM-Nonlinear model

40

38

36 [

(%)

34

32

30
28 \}

26

«s)

Fig. 3 Comparison of power angle curves between linear

and nonlinear models of the system (0=0.198)

"""" Nonlinear model | 7

1(s)

Fig. 5 Comparison of power angle curves between linear
and nonlinear models of the system (o=0.1)
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Fig. 6 Comparison of power angle curves between linear

and nonlinear models of the system (0=10.15)

Finally, according to the results of the model, the stabil-

ity of the power system is analyzed.

The stability analysis of an OMIB system is the basis
of multi-machine power system analysis. Therefore, this
paper mainly studies the stability of an OMIB system.
To apply the proposed method to a multi-machine
power system: first, the stochastic dynamic model of the
multi-machine system is established. Secondly, the
equivalent value is simplified to the stochastic dynamic
model corresponding to an OMIB system by coherency
clustering [9, 12], and the equivalent model is solved. Fi-

nally, the stability analysis of the system
using the method proposed in the paper.

is carried out

32

30

28

26 [

T

Linear model
Nonlinear model | 7

«(s)

Fig. 7 Comparison of power angle curves between linear

and nonlinear models of the system (0=0.2)
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6 Case studies

6.1 Determination and comparative analysis of threshold
The example system selected for this paper is an OMIB
system, and the electrical parameters of this system are
shown in Table 1.

All the above parameters are converted into per-unit
values for calculation and simulation in the paper. In
this section, the constructed Milstein-Euler predictor-
corrector method of the stochastic dynamic model of
the power system is used for numerical discretization.
The optimal threshold model of stochastic excitation in-
tensity is then solved to obtain the threshold value o..
We set Ad.=1° and the threshold of stochastic excita-
tion intensity o0.=0.234 is obtained from the
optimization model in (31). The simulation results of
the power angle curves of the linear and nonlinear sto-
chastic dynamic models of the system are shown in
Fig. 2.

As seen in Fig. 2, the maximum error of the power
angle of the linear and nonlinear stochastic dynamic
models is 0.99484°, within the constraint range. In 0-7s,
the amplitude of power angle oscillation increases while
in the 7-10s range, the power angle oscillation shows
attenuation and gradually tends toward being stable.

The proposed method is compared with the Euler-
Maruyama numerical calculation method (as Euler-
Maruyama, Milstein and other numerical methods have
the same numerical discrete format, the Euler-
Maruyama numerical method is thus used as an example
for comparative analysis). The Euler-Maruyama method
is used for numerical discretization, and the optimal
threshold model of the stochastic excitation intensity of
power systems is solved. o.=0.198 is obtained in the
same constraint range, and the simulation results of the
power angles are shown in Fig. 3 (In the simulation re-
sults, EM represents the Euler-Maruyama numerical cal-
culation method).

In Fig. 3, the curves fluctuate up and down periodically
around the initial value and the error is within the con-
straint range. The fluctuation trend of each time period
is the same as Fig. 2, which indicates that the Milstein-
Euler predictor-corrector method proposed in this paper
is effective.

Comparing the threshold range of different algorithms,
if the algorithm allows the model to be linearized effect-
ively in a wider excitation range, then the algorithm has
stronger adaptability. The simulation results show that
the threshold range obtained by the Milstein-Euler
predictor-corrector method is wider than that obtained
by the Euler-Maruyama method. The Euler-Maruyama
method cannot linearize the stochastic dynamic model
when the excitation intensity is greater than 0.198, while
the Milstein-Euler predictor-corrector method becomes
unable to linearize the stochastic dynamic model only
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Table. 2 Power angle error and simulation efficiency when excitation intensity is less than threshold

Stochastic excitation intensity o

Power angle errors |Ad,,| (°)

Percentage efficiency improvement (%)

0.05
0.1
0.15
0.2
0.234

0.088 33
0.110 29
0.330 32
0677 28
0.995 30

when the excitation intensity is greater than 0.234.
Therefore, the proposed Milstein-Euler predictor-
corrector method is more adaptable than the Euler-
Maruyama and other numerical calculation methods.
After obtaining the excitation intensity threshold o, a
simulation analysis is performed using the linear and
nonlinear stochastic dynamic models depending on the
relative values of stochastic excitation intensities and the
threshold. The power angle curves between the linear
and nonlinear stochastic dynamic models are compared,
and the influence of different stochastic excitation inten-
sities on power system stability is analyzed to verify the
correctness and rationality of the proposed method.

6.2 Stability analysis of stochastic excitation intensities
less than the threshold value
With the stochastic excitation intensity o< ., the simu-
lation analysis is carried out on stochastic excitation in-
tensities of 0.05, 0.1, 0.15 and 0.20, and the simulation
results are shown in Figs. 4, 5, 6 and 7 respectively. The
maximum error and simulation efficiency of the power
angle curves corresponding to the linear and nonlinear
stochastic dynamic models are shown in Table 2. (The
percentage efficiency improvement is of the simulation
efficiency of the linear relative to the nonlinear model).
As seen in Figs. 4, 5, 6 and 7 and Table 2, for o< o,
the power angle curves of the linear and nonlinear sto-
chastic dynamic models of the system only have small
errors. With the increase of the stochastic excitation in-
tensity, the maximum error of the power angle curves
gradually increases. Within the controllable error range,
the power angle curves coincide and the stability conclu-
sions obtained are the same. Therefore, when the thresh-
old condition is met, it is effective to convert the
nonlinear model to a linear model using the predictor-
corrector method. It will only bring bounded stochastic
fluctuations without creating new stability problems.
With the linear stochastic dynamic model, the simula-
tion efficiency is significantly improved compared to the
nonlinear one as shown in Table 2.

6.3 Stability analysis of stochastic excitation intensities
greater than the threshold value

To verify the influence of linearization on the system
when the stochastic excitation intensity o > o, stochastic

excitation intensities of 0.3, 0.6 and 0.8, which are
greater than the threshold, are selected for simulation
analysis. The simulation results are shown in Figs. 8, 9
and 10.

In Figs. 8 and 9, the power angle curves of the linear
and nonlinear stochastic dynamic models of the system
have similar trends, although the errors become non-
negligible. In Fig. 10, for the linear model, the overall
power angle curve shows a stable trend, while for the
nonlinear model, the system gradually becomes unstable.
Under the above stochastic excitation intensities, the
maximum errors of the corresponding power angle
curves of the linear and nonlinear stochastic dynamic
models are shown in Table 3.

As can be seen, for o> 0., the errors of the power
angle curves between the linear and nonlinear models
become more significant. The higher the intensity of the
stochastic excitation is, the larger the maximum angle
error will be. Under severe conditions, e.g., when o=0.8,
the nonlinear stochastic dynamic model becomes un-
stable while the linear stochastic dynamic model still
shows a stable trend. Thus, the nonlinear stochastic dy-
namic model cannot be linearized and only the nonlin-
ear model can be used to further analyze the stability of
the power system under the stochastic excitation.
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Fig. 8 Comparison of power angle curves between linear
and nonlinear models of the system (o=0.3)
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Fig. 9 Comparison of power angle curves between linear
and nonlinear models of the system (o= 0.6)

In summary, with the increase of stochastic excitation
intensity, the errors of the power angle curves of the lin-
ear and nonlinear models increase accordingly. When
the stochastic excitation intensity o < 0., the power angle
curves coincide and the stability conclusion is the same.
Therefore, the nonlinear stochastic dynamic model can
be linearized to further analyze the stability of a power
system under stochastic excitation, so as to improve the
efficiency of calculation and simulation. Conversely, for
o> 0., the errors of the power angle curves of the linear
and nonlinear stochastic dynamic models of the system
become significant. In this case, the nonlinear stochastic
dynamic model cannot be linearized but it needs to be
used for further analysis. Thus, determining the stochas-
tic excitation intensity threshold is the premise to obtain
a power system model and stability under the influence
of reliable and effective stochastic excitation.
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Fig. 10 Comparison of power angle curves between linear
and nonlinear models of the system (0 =0.8)
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Table 3 Power angle error when excitation intensity is greater

than threshold

Stochastic excitation intensity o

Power angle errors |Adg,| (°)

0.3
0.6
08

1.839
9.783
96.226

7 Conclusions

In this paper, the Milstein-Euler predictor-corrector
method for the stochastic dynamic model of power
system is constructed, the threshold discrimination
basis for linearizing the nonlinear stochastic dynamic
model is proposed, and the influence of different sto-
chastic excitation intensities on the stability of the
system is quantitatively analyzed. The simulation ana-
lysis shows that: 1) When the stochastic excitation in-
tensity o< o, the errors of the linear and nonlinear
stochastic dynamic models of the system can be
neglected, and the stability conclusions obtained by
using the two models are consistent. Thus, the non-
linear stochastic dynamic model can be linearized and
the linear model can be used to analyze the system
stability so as to improve simulation efficiency. When
the stochastic excitation intensity o> g, the errors of
the linear and nonlinear stochastic dynamic models of
the system become non-negligible and the stability
conclusions obtained diverge. Thus, it is necessary to
use the nonlinear stochastic dynamic model to
analyze the stability of the system. 2) When the
Gaussian stochastic excitation intensity is less than
the threshold, it will only bring bounded stochastic
fluctuations to the power system without generating
new stability problems. However, when the stochastic
excitation intensity is greater than the threshold, the
operating state will deviate from its stable equilibrium
point, and therefore, the stability of the system needs
to be further examined.

The emphases and difficulties of further research are
as follows: 1) How to effectively evaluate explicit sto-
chastic excitation intensity; 2) How to construct the sto-
chastic dynamic model and algorithm to analyze the
stability of the power system under the interference of
multiple noises and multiple types of stochastic excita-
tion. 3) How to apply the proposed method to multi-
machine power systems.
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