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Reliability sensitivity of wind power system
considering correlation of forecast errors
based on multivariate NSTPNT method
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Abstract

The impact of wind power forecast errors (WPFEs) on power system reliability can be quantified by a sensitivity
model, which helps to determine the importance of different wind farms. However, the unknown distribution and
correlation of WPFEs make it difficult to calculate the reliability sensitivity. The existing univariate non-standard
third-order polynomial normal transformation (NSTPNT) expresses the reliability sensitivity of WPFEs by a normal
random variable with explicit distribution, and is not suitable for multiple wind farms with correlated forecast errors.
In this paper, the univariate NSTPNT method is extended to the multivariate by deriving the analytical expression of
the correlation coefficients before and after the transformation, to establish the transformation between the WPFEs
and a normal random vector (RV) with the specific correlation. A reliability sensitivity model to the WPFEs expressed
to the normal RV is then proposed. The numerical results validate the accuracy of the proposed multivariate NSTP
NT and the sensitivity model. The maximum relative error for using the sensitivity to approximate the change of
reliability with distribution parameters of the WPFEs is less than 2.42%. The necessity of considering the correlation
of WPFEs is analyzed. The maximum relative error of the sensitivity reaches 83% when the correlation is ignored.
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1 Introduction
Wind power forecast errors (WPFEs) introduce power
imbalance into power systems [3, 15, 27, 40]. This then
requires additional reserve to maintain the reliability
level and thus increases the operating cost [1]. A case
study based on a real wind power installation in Spain il-
lustrates that the forecast errors cost around 10% of the
total income of the energy generation [12]. The imbal-
ance caused by WPFEs is illustrated in Fig. 1, where the
data is taken from the aggregate wind power in Belgium.
The uncertainty of the forecast has drawn a great deal

of global attention while its accuracy is also far from sat-
isfactory [5, 19, 23, 37, 41]. According to a statistical re-
port on domestic WPFEs in China, the root mean
square errors are around 10%–20% for day-ahead

forecasting [26]. As it is difficult to improve the accuracy
of the forecast, quantifying the impact of WPFEs on the
reliability can provide a compromise solution for power
dispatch.
Reliability sensitivity of a power system reflects the im-

pact of the parameters of the components on power sys-
tem reliability. This helps to identify system
“bottlenecks” and to compare the importance of differ-
ent components quantitatively [21]. In [2], the sensitiv-
ities are applied to rank connected synchronous
generators according to their importance to the system
in terms of angular and voltage stability. The sensitivities
of the real and reactive power losses with respect to the
size and the operating point of the distribution genera-
tions have been studied in [17], while a hybrid multi-
objective sensitivity analysis algorithm is proposed to
optimize the capacity of PV and storage systems in [18].
A formulation for distribution class local margin prices
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is presented based on power flow sensitivity in [32], and
a sensitivity matrix-based approach is proposed to im-
prove the minimum damping ratio in [45].
However, the existing methods cannot be applied to

the sensitivity analysis of a wind power system consider-
ing WPFEs. Assuming that WPFEs follow certain distri-
butions, e.g., the normal distribution [31], the Cauchy
distribution [14], the hyperbolic distribution [16], or the
mix distribution model [35], the sensitivity of the reli-
ability of the wind power system to WPFEs can be
expressed by the partial derivative of the probability
density function (PDF), while the distribution of WPFEs
is unknown. Nonparametric methods, including the
Gaussian mixture model (GMM) [38] and the kernel
density estimation [4], may be applied to model the PDF
of WPFEs. The relationship between the original distri-
bution parameters of WPFEs and the distribution model
by these methods is implicit, which makes it difficult to
calculate the sensitivity.
When multiple wind farms are integrated into a power

system, the dependency between different wind farms
has a significant impact on the reliability [42]. WPFEs at
different locations cannot be assumed to be independent
if they are geographically close owing to the inertia of
meteorological forecasting systems [30, 44]. According
to the case studies based on western Denmark [34] and
Ireland [39], the correlation of the WPFEs is strongly
dependent on the distance between the wind farms. In
general, with decreasing distance between two wind
power production sites, the correlation of WPFEs in-
creases [24]. It should be noted that the correlation of
WPFEs between multiple wind farms will increase the
uncertainty of the system exposed to them, while the
correlation of the wind power forecast does not expose
the system to greater levels of uncertainty [10]. There-
fore, it is necessary to take the correlation of WPFEs
into account.

Multivariate methods may be used to model the joint
distribution of WPFEs, e.g., the multivariate kernel dens-
ity estimation is adopted to model the joint distribution
of wind speed, wind direction, and the air density [46].
Reference [33] presents a probabilistic approach for stat-
istical modeling of the loads in distribution networks
where the multivariate GMM is applied to capture the
correlation between different buses. A probabilistic
power flow method is proposed based on the multivari-
ate third-order polynomial normal transformation
(TPNT) method and quasi Monte Carlo simulation [13],
while the joint probabilistic distribution of wind power
is modeled by the Copula function in [22] where the in-
fluence of wind power correlation on voltage stability is
analyzed. The multivariate joint distributions of WPFEs
are established in terms of the spatial and temporal cor-
relation in [36, 47]. Although these multivariate methods
determine the joint distribution considering the correl-
ation, the relationship between the original distribution
parameters of WPFEs and the distribution modeled is
still implicit, which cannot be applied to calculate the
sensitivity directly.
So far, there has been little research proposed to calcu-

late the sensitivities of the reliability with respect to
WPFEs considering an unknown distribution and the
correlation. The univariate non-standard third-order
polynomial normal transformation (NSTPNT) method
proposed by the authors establishes the transformation
between the non-normal and non-standard normal ran-
dom variables [20]. The expressions of the polynomial
coefficients are derived based on the linear moments
and the probability weighted moments analytically [8].
With the univariate NSTPNT method, the sensitivity
with respect to WPFEs is expressed as being of the non-
standard normal random variables. This solves the prob-
lem of the reliability sensitivity of the power system with
a single wind farm integrated, while the correlation
among different wind farms is ignored.
During the estimation of reliability and sensitivity, the

samples of WPFEs of smaller size than the historical
data may be applied to save time. The normal samples
are drawn and transformed to the WPFEs samples by
multivariate NSTPNT, while the transformation may
cause correlation error because of the limited sample
size. A correlation control technique is thus introduced
to correct this error, while the WPFEs samples and nor-
mal samples are applied to calculate the reliability and
sensitivity, respectively. Thus a one-to-one correspond-
ence between the two samples is necessary to ensure the
accuracy of the reliability sensitivity, while a traditional
method such as the Cholesky decomposition [25] con-
trols the correlation of one sample at a time. A flexible
method is thus required to preserve this correspondence,
such as use of a genetic algorithm (GA) [43].

Fig. 1 Power imbalance caused by WPFEs
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The contributions and originality of this paper are
summarized as follows.

(1) The univariate NSTPNT method is extended to the
multivariate one by deriving the analytical
expression of the correlation coefficients before and
after the transformation.

(2) A correlation control technique based on GA is
modified to control the correlation of the normal
and WPFEs samples simultaneously.

(3) The reliability sensitivity considering the correlation
of WPFEs among different wind farms is estimated.

The rest of the paper is organized as follows. The
multivariate NSTPNT method is derived in Section 2.
The reliability sensitivity is estimated in Section 3. The
numerical results are presented and discussed in Section
4. The conclusion is presented in Section 5.

2 Methods: multivariate NSTPNT
The non-normal random vector (RV) Y is transformed
to the polynomial non-standard normal RV Z with the
same expectation μ and standard deviation σ. The trans-
formation is divided into two parts as shown in Fig. 2,
with the transformation of the component noted as fi
and the transformation of the correlation coefficient
noted as gij, as:

Y i ¼ f i Zið Þ
ρYij ¼ gij ρZij

� �(
ð1Þ

where 1 ≤ i, j ≤ n, Yi and Zi are the components of Y and
Z, respectively. ρYij is the correlation coefficient between
Yi and Yj, while ρZij is the correlation coefficient between
Zi and Zj. n is the dimension of the RV.
The transformation of a component is derived based

on the L-moment and probability weight moment, and
the polynomial coefficients are obtained as shown in
[20]. Focusing on the transformation of the correlation
coefficient, which is derived based on the cross product,
the transformations of components are given as:

Y i ¼ f i Zið Þ ¼ a0i þ a1iZi þ a2iZ
2
i þ a3iZ

3
i

Y j ¼ f j Z j
� � ¼ a0 j þ a1 jZ j þ a2 jZ

2
j þ a3 jZ

3
j

�
ð2Þ

where μi, μj, σi, and σj are the expectations and the
standard deviations of Yi and Yj. a0i-a3i and a0j-a3j are
the polynomial coefficients of fi and fj, respectively.
The cross product of Yi and Yj is calculated as:

E Y iY j
� � ¼ E

X3
p¼0

apiZ
p
i

 ! X3
q¼0

aqjZ
q
j

 !" #
ð3Þ

Expanding (3) leads to:

ρYijσ iσ j þ μiμ j

¼ a0i a1i a2i a3ið Þ � E
1 Z j Z2

j Z3
j

Zi ZiZ j ZiZ
2
j Z1Z

3
j

Z2
i Z2
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i Z

2
j Z2

1Z
3
j

Z3
i Z3

i Z j Z3
i Z

2
j Z3
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0
BB@

1
CCA

ð4Þ

From (4), the relationship between the correlation co-
efficient of the non-normal RV and the cross products
of the non-standard normal RV is established. In prac-
tice, ρYij is estimated with the sample data. The cross
product E (Zp iZq j) is expressed as:

E Zp
i Z

q
j

� �

¼ E σ iXi þ μið Þp σ jX j þ μ j

� �qh i

¼
Xp
u¼0

Xq
v¼0

p
u

� �
q
v

� �
σp − u
i μui σ

q − v
j μvj � E Xp − u

i Xq − v
j

� �

ð5Þ

where p, q = 0, 1, 2, 3. Xi and Xj are the normalized com-
ponents of Zi and Zj, respectively. ρXij is equal to ρZij,
while (u p) and (v q) are the combinatorial numbers.
The formulas of the cross product of bivariate standard
normal random variables are shown as [29]:

E X2α
i X2β

j

� �
¼ 2αð Þ! 2βð Þ!

2αþβ

Xmin α;βð Þ

l¼0

2ρXij
� �2l

α − lð Þ! β − lð Þ! 2lð Þ!
ð6Þ

E X2αþ1
i X2βþ1

j

� �

¼ ρXij 2αþ 1ð Þ! 2βþ 1ð Þ!
2αþβ

Xmin α;βð Þ

l¼0

2ρXij
� �2l

α − lð Þ! β − lð Þ! 2l þ 1ð Þ!
ð7Þ

Substituting (6) and (7) into (5) yields:Fig. 2 Transformation using MVNSTPNT method
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

By substituting (8) into (4), the transformation of the
correlation coefficient is derived, while solving (4) ob-
tains the correlation coefficient of the normal RV. The
valid solution should satisfy the following restrictions:

− 1≤ρZij≤1
0≤ρZij � ρYij

�
ð9Þ

The joint probability density function (PDF) of Y is
expressed as:

f Y yð Þ ¼ ϕ z ρZjð ÞYn
i¼1

a1i þ 2a2izi þ 3a3iz
2
i

		 		 ð10Þ

where ϕ is the joint PDF of the normal RV. ρZ is the
correlation matrix of Z, and its elements are obtained by
solving (4) for each element in the correlation matrix of
Y.
The differences between the univariate NSTPNT and

the multivariate NSTPNT methods lie in:

(1) The univariate NSTPNT method establishes the
transformation between the random variables, while
the multivariate NSTPNT method establishes the
transformation between the RVs. The correlation
information between the components of the RV is
captured by the multivariate NSTPNT method, but
is ignored by the univariate VNSTPNT method.

(2) The multivariate NSTPNT method is divided into
two parts of component transformation and
correlation coefficient transformation. The former
is the same as the univariate NSTPNT method,
while the latter is newly derived.

(3) The univariate NSTPNT method determines the
marginal PDF of the RV, while the multivariate
NSTPNT method determines the joint PDF.

3 Reliability and sensitivities of a power system
with multiple wind farms
The WPFEs of multiple wind farms are regarded as the
RV Y. Based on the historical data of the WPFEs, the
transformation between Y and a normal RV Z with spe-
cific correlation is established by the multivariate NSTP
NT method. With the Monte Carlo method and optimal
load curtailment model, the reliability and sensitivity are
estimated based on the samples of the WPFEs and the
normal RV, respectively. The correlation of both samples
is adjusted by a modified correlation technique.

3.1 Modified correlation control
During the estimation, the normal sample SZ is drawn at
first, then transformed to the sample of the WPFEs SY
by the multivariate NSTPNT method. The multivariate
NSTPNT method establishes the transformation be-
tween the two RVs, while in practice the samples of the
RVs are adopted. The transformation based on the RVs
yields errors when applied to the samples because of the
limited sample size. The correlation control technique is
introduced to ensure that the correlation of the RVs and
samples stays the same.
As SY is drawn by transforming SZ with the multivari-

ate NSTPNT method, SY is applied to estimate the reli-
ability and SZ is applied to calculate the sensitivity, as
will be discussed in Section 3.3. Thus, a one-to-one cor-
respondence between the elements of SY and SZ is ne-
cessary to ensure the accuracy of the reliability
sensitivity. To preserve this correspondence during the
correlation control, a GA-based correlation control tech-
nique [43] is modified and the optimal subject fFit of the
GA is given by:

f Fit ¼ ΔρZ þ ΔρY ð11Þ
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ΔρZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
n n − 1ð Þ

Xn
j¼2

Xj − 1

i¼1

ρZij − ρSamZij

� �2vuut

ΔρY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
n n − 1ð Þ

Xn
j¼2

Xj − 1

i¼1

ρYij − ρSamYij

� �2vuut

8>>>>>><
>>>>>>:

ð12Þ

where ρSam Yij and ρSam Zij are the correlation coeffi-
cients of SY and SZ, respectively. ΔρY and ΔρZ are the
differences between the correlation coefficients of the
samples and RVs. Other operations including selection,
crossover, and mutation are similar to [43] except that
these operations should be executed on SY and SZ
simultaneously.

3.2 Reliability estimation
Given the WPFEs, the load forecast errors, and the ran-
dom outage of the system equipment, the reliability of
wind power system is estimated. This paper mainly fo-
cuses on the unknown distribution and the correlation
of the WPFEs. The correlations between the WPFEs and
the load forecast error, and those between the WPFEs
and the equipment outage, are ignored. We set the sam-
ple size N. The sample of the power system is drawn by
combining the samples of the WPFEs, the load forecast
error, and the equipment outage denoted as SSys,h (h = 1,
…, N). By substituting SSys,h into the optimal load cur-
tailment model based on DC power flow [6, 9], the reli-
ability indices including the loss of load probability
(LOLP) and the expected demand not served (EDNS)
are calculated as:

LOLP ¼ 1
N

XN
h¼1

I f SSys;h
� �

EDNS ¼ 1
N

XN
h¼1

I f SSys;h
� �

Lc SSys;h
� �

8>>>><
>>>>:

ð13Þ

where If is the indicator of the load curtailment, and If =
1 denotes system failure with load curtailment. Lc is ob-
tained by solving the optimal load curtailment model.

3.3 Reliability sensitivities with correlated WPFEs
The sensitivities of the reliability indices with respect to
the distribution parameters of the WPFEs are calculated
as:

∂LOLP
∂μ

¼ 1
N

XN
h¼1

I f SSys;h
� �

f Y SY ;h
� � ∂ f Y SY ;h

� �
∂μ

∂LOLP
∂σ

¼ 1
N

XN
h¼1

I f SSys;h
� �

f Y SY ;h
� � ∂ f Y SY ;h

� �
∂σ

8>>>><
>>>>:

ð14Þ

∂EDNS
∂μ

¼ 1
N

XN
h¼1

I f SSys;h
� �

Lc SSys;h
� �

f Y SY ;h
� � ∂ f Y SY ;h

� �
∂μ

∂EDNS
∂σ

¼ 1
N

XN
h¼1

I f SSys;h
� �

Lc SSys;h
� �

f Y SY ;h
� � ∂ f Y SY ;h

� �
∂σ

8>>>><
>>>>:

ð15Þ
where SY,h is the element of SY.
With the unknown distribution of the WPFEs and the

correlation between multiple wind farms, the joint PDF
of the WPFEs is expressed by (10) according to the
multivariate NSTPNT method. Thus, in (14) and (15),
the joint PDF of the WPFEs is replaced by that of nor-
mal RV, ϕ (SZ,h|ρZ) as:

∂ f Y SY ;h
� �
∂μ

¼ 1Yn
i¼1

a1i þ 2a2izi þ 3a3iz
2
i

		 		
∂ϕ SZ;h ρZj� �

∂μ

∂ f Y SY ;h
� �
∂σ

¼ 1Yn
i¼1

a1i þ 2a2izi þ 3a3iz
2
i

		 		
∂ϕ SZ;h ρZj� �

∂σ

8>>>>>>>><
>>>>>>>>:

ð16Þ
where SZ,h is the element of SZ. The joint PDF of the
normal RV is given by:

ϕ SZ;h ρZ
		� � ¼ 2πð Þ − n

2 Cj j − 1
2 exp −

1
2

SZ;h − u
� �T

C − 1 SZ;h − u
� �� �

ð17Þ
where C is the covariance matrix given as:

C ¼
σ21 ρZ12σ1σ2 ⋯ ρZ1nσ1σ2

ρZ12σ2σ1 σ22 ⋯ ρZ2nσ2σn
⋮ ⋮ ⋮ ⋮

ρZn1σnσ1 ρZn2σnσ2 ⋯ σ2n

2
664

3
775 ð18Þ

The derivation of ϕ (SZ,h|ρZ) with respect to μ is writ-
ten in the form of the vector as:

∂ϕ SZ;h ρZ
		� �

∂u
¼ ϕ SZ;h ρZj� �

C − 1 SZ;h − u
� � ð19Þ

The derivation of ϕ (SZ,h|ρZ) with respect to σ cannot
be written in the form of a vector, and should be calcu-
lated separately for each σi as:

∂ϕ SZ;h ρZ
		� �

∂σ i

¼ −
1
2
ϕ SZ;h ρZj� �

Tr C − 1 ∂C
∂σ i


 �

þ 1
2
ϕ SZ;h ρZj� �

SZ;h − u
� �T

C − 1 ∂C
∂σ i

C − 1 SZ;h − u
� �

ð20Þ
where Tr represents the trace of a matrix.
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The derivation of C with respect to σj is a sparse
matrix with only the elements of the ith row and the ith

column being nonzero, as:

∂C
∂σ i

¼

ρi1σ1
⋮

ρi1σ1 ⋯ 2σ i … ρinσn
⋮

ρinσn

2
66664

3
77775 ð21Þ

By substituting (15), (18) and (19) into (13) and (14),
we obtain the sensitivity of the wind power system reli-
ability with respect to the distribution parameters of the
WPFEs considering the correlation between multiple
wind farms.
The main difference of the sensitivities between the

univariate case and the multivariate case lies in the joint
PDF. Ignoring the correlation between multiple wind
farms, the covariance matrix is a diagonal matrix. Thus,
the joint PDF is expressed as the product of the marginal
PDFs, and the sensitivity is calculated independently
with the univariate NSTPNT method. If the WPFEs of
multiple wind farms are independent, the sensitivities
calculated by the univariate NSTPNT and the multivari-
ate NSTPNT methods are identical. However, correl-
ation of the WPFEs exists in practice and the covariance
matrix cannot be regarded as a diagonal matrix. There-
fore, ignoring the correlation of the WPFEs leads to er-
rors in calculating the reliability and sensitivity. Thus, it
is necessary to use the multivariate NSTPNT method to
estimate the sensitivity in the multivariate case.
The coefficient of variance (CV) is applied as a conver-

gence criterion of the reliability indices and sensitivities,

CV ¼
ffiffiffiffi
D

p
ffiffiffiffi
N

p
E

ð22Þ

where E and D represent the expectation and the vari-
ance of the sample, respectively.
The process to estimate the reliability and sensitivity

of a wind power system considering the correlated
WPFEs is illustrated in Fig. 3.

4 Results and discussion
The IEEE 14-bus test system [7] is modified to verify the
proposed method. Two wind farms, noted as W1 and
W2, are integrated to bus 2 and bus 8, respectively, as
shown in Fig. 4. The historical data of wind power out-
put and the forecast from Elia [11] is adopted, while the
WPFEs are obtained by calculating the difference be-
tween the actual wind power and the forecasted value.
The penetration of wind power is 20% and the reserve
capacity is determined based on the “3 + 5” rule [28].
The correlation coefficient of the WPFEs is set at 0.5

Fig. 3 Reliability and Sensitivity considering
correlated WPFEs

Fig. 4 Modified IEEE 14-bus test system
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[10]. The LOLP and EDNS of the system are 0.2643 p.u.
and 0.0355 p.u., respectively.

4.1 Verification of the multivariate NSTPNT method
By assuming the same marginal distributions of the
WPFEs, the correlation coefficient of the WPFEs ρY12
changes from − 1 to 1. The transformed correlation co-
efficients ρZ12 obtained by the multivariate NSTPNT
and the multivariate TPNT are compared in Fig. 5. As
can be seen, the results from the two methods are quite
close.
With ρY12 fixed at 0.5, ρZ12 obtained by the multivari-

ate NSTPNT method is 0.5247 which costs 0.9631 s on
average. The joint PDFs are constructed using the multi-
variate GMM, the multivariate normal distribution, the
multivariate TPNT method, and the multivariate NSTP
NT method, respectively. The corresponding contours
are compared in Fig. 6 with the result obtained from the
multivariate GMM selected as the reference. As is seen
from Fig. 6, the contour determined by the multivariate
normal distribution is different from the others, while
the contours determined by the multivariate NSTPNT
method and the multivariate TPNT method are similar.
The error of the joint PDF constructed by the multivari-
ate NSTPNT is more obvious at the edge than in the
central part. In general, the accuracy of the multivariate
NSTPNT method and the multivariate TPNT method
are similar, with both performing better than the multi-
variate normal distribution. As the multivariate NSTP
NT method is applied to calculate the sensitivity of the
power system reliability with respect to the distribution
parameters of the WPFEs, its accuracy is thus verified.

4.2 Error analysis of correlation control
With the sample size N set at 1000, the normal sample
SZ and the WPFEs sample SY are drawn with three cases.
The differences between the correlation of the samples
and the target value are compared. The cases are defined
as follows:

Fig. 5 Comparison of the transformed correlation coefficient

Fig. 6 Comparison of the contours of correlated WPFEs
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Case 1: Monte Carlo method with Cholesky
decomposition, and the correlation of SZ controlled;
Case 2: Monte Carlo method with GA, and the
correlation of SZ controlled;
Case 3: Monte Carlo method with GA, and the
correlations of SZ and SY controlled.

The convergence criterion of the GA is set at 10− 5.
Each case is repeated 100 times. The expectation and
the standard deviation of ΔρY and ΔρZ are listed in
Table 1. As can be seen, the average error of Case 1 is
the largest. For ΔρZ, the difference between Case 2 and
Case 3 is small, while for ΔρY, only Case 3 is satisfactory.
Thus it is necessary to control the correlation of the
normal sample and the WPFEs sample simultaneously.
The average numbers of iterations for Cases 2 and 3

are 47.28 and 1069.53, respectively, and cost 0.1729 s
and 4.5256 s, respectively. The increased calculation time
is acceptable considering the time-consuming estimation
of the reliability and sensitivity.

4.3 Error analysis of correlation control
By changing the sample size, the reliability indices of the
power system and their sensitivities with respect to the
distribution parameters of the WPFEs are estimated, and
the CVs of the reliability and sensitivity are calculated.
Because of limitations on space in this paper, only the
CVs of the LOLP and EDNS, and the sensitivity of W1
are shown in Fig. 7. In general, the reliability indices
converge faster than the sensitivities, and so it is more
time-consuming to estimate the sensitivities than the re-
liability. The slowest rate of the convergence is observed
for the sensitivities of the EDNS with respect to the
standard deviation. When the sample size is 8.5 × 104, all
the CVs are less than 0.08.

4.4 Verification of sensitivities
The sample size is now set at 8.5 × 104. The reliability
indices are calculated repeatedly as the expectation and
standard deviation of the WPFEs are changed respect-
ively within the range of ±10% and compared with those
estimated by the sensitivities. The results of W1 are
shown in Fig. 8.

As is shown in Fig. 8 (a) and (b), the red curves are
not straight, which reflect the exact results of the LOLP
change with the expectation and standard deviation. The
reason is that the LOLP is a discrete value. It represents
the probability of the power outage obtained as the
number of the power outage divided by the sample size.
The relative errors of the sensitivities of LOLP with re-

spect to the expectation and standard deviation are less
than 0.07% and 1.63%, respectively. For EDNS, the rela-
tive errors are less than 0.03% and 2.42% respectively.
The difference between the results obtained by the two
methods is small, which verifies the accuracy of the pro-
posed sensitivity model.

4.5 Impact of WPFE correlation on reliability and
sensitivity
The reliability of the power system is calculated with
different correlation coefficients of the WPFEs, as
shown in Table 2. The LOLP and EDNS increase
monotonously with the correlation coefficients. Hence
ignoring the correlation between the multiple wind
farms will lead to an optimistic estimation of power
system reliability.
Based on the results in Table 2, the sensitivities of the

reliability are calculated using the multivariate NSTPNT
method and the univariate NSTPNT method, respect-
ively, where the latter ignores the correlation. The differ-
ences of the sensitivities between two methods are
shown in Table 3. When ρY12 is 0, the maximum relative
error is less than 0.0006%, so the results obtained from
the two methods are consistent with each other if the
WFPEs are independent. With the increase of ρY12, the
relative errors increase monotonously with a maximum
value of around 83%. It means that with higher levels of
WPFE correlation, the errors of the sensitivities caused
by ignoring the correlation will be significant.

Table 1 Error analysis of correlation control

Expectation Standard deviation

ΔρZ Case 1 0.024 0.017

Case 2 4.790 × 10−6 2.959 × 10− 6

Case 3 2.292 × 10−6 2.284 × 10−6

ΔρY Case 1 0.036 0.030

Case 2 0.019 0.012

Case 3 3.780 × 10−6 2.330 × 10− 6

Fig. 7 CVs of reliability indices and sensitivities
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5 Conclusion
The existing method uses the univariate NSTPNT to
calculate the reliability and sensitivity of the system with
a single wind farm, but is not competent for multiple
wind farms with correlations of WPFEs. In this paper, a
reliability sensitivity model considering the correlated
forecast errors among multiple wind farms is proposed.
The main work is summarized as follows:
(1) The univariate NSTPNT method is extended to

the multivariate one by deriving the analytical expression
of the correlation coefficients before and after the trans-
formation to establish the transformation between the
WPFEs and a normal RV with a specific correlation. The
reliability sensitivity to the WPFEs is then expressed by
the normal RV.
(2) Combining the Monte Carlo method and the

multivariate NSTPNT method, the normal sample is
transformed to the WPFEs one, and this is substituted
into the optimal load curtailment to estimate the reli-
ability and sensitivity.
(3) During the sampling, the error of the correlation

between the WPFEs sample and its target value caused
by transformation is corrected by a modified GA.
The numerical results yield the following conclusions:
(1) By comparison with the GMM and the TPNT

method, the accuracy of the multivariate NSTPNT
method is verified, while the accuracy of the sensitivity
is validated by comparing the results from repeated cal-
culations using different parameters.
(2) Ignoring the correlation of the WPFEs between the

wind farms yields an overly optimistic estimation of
power system reliability and errors of sensitivity. Such
impacts will be more significant with higher levels of
correlation.

Fig. 8 Verification of sensitivities

Table 2 Impact of WPFE correlation on reliability

ρY12 0 0.1 0.2 0.3 0.4 0.5

LOLP 0.236 0.243 0.249 0.257 0.264 0.266

EDNS 0.032 0.032 0.033 0.033 0.035 0.036

Table 3 Relative error of sensitivity (%)

ρY12 0 0.1 0.2 0.3 0.4 0.5
∂LOLP
∂μ

W1 0.000 16.767 33.241 49.651 67.417 83.338

W2 0.000 5.953 12.031 18.130 23.736 30.004

∂LOLP
∂σ

W1 0.000 12.280 26.543 40.970 59.068 79.098

W2 0.000 1.917 4.365 7.502 10.460 14.517

∂EDNS
∂μ

W1 0.000 18.534 32.345 51.729 67.183 73.617

W2 0.000 5.386 12.365 17.402 23.819 33.965

∂EDNS
∂σ

W1 0.000 13.221 26.500 43.055 61.242 66.954

W2 0.000 1.895 4.406 7.678 11.001 16.962
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(3) The reliability indices converge faster than the sen-
sitivities. The slowest rate of the convergence is observed
for the EDNS sensitivity with respect to the standard de-
viation. This is used as the indicator for the convergence
of the whole calculation.
Future studies can be directed at the following areas:
(1) The accuracy of the multivariate NSTPNT method

is verified by comparing the contours of the joint PDFs
constructed by different methods. It may be improved
with a quantitative approach.
(2) The slow convergence may be improved by a vari-

ance reduction technique.
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