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Abstract

Multi-Area Multi-Fuel Economic Dispatch (MAMFED) aims to allocate the best generation schedule in each area and
to offer the best power transfers between different areas by minimizing the objective functions among the
available fuel alternatives for each unit while satisfying various constraints in power systems. In this paper, a
Fuzzified Squirrel Search Algorithm (FSSA) algorithm is proposed to solve the single-area multi-fuel economic
dispatch (SAMFED) and MAMFED problems. Squirrel Search Algorithm (SSA) mimics the foraging behavior of
squirrels based on the dynamic jumping and gliding strategies. In the SSA approach, predator presence behavior
and a seasonal monitoring condition are employed to increase the search ability of the algorithm, and to balance
the exploitation and exploration. The suggested approach considers the line losses, valve point loading impacts,
multi-fuel alternatives, and tie-line limits of the power system. Because of the contradicting nature of fuel cost and
pollutant emission objectives, weighted sum approach and price penalty factor are used to transfer the bi-objective
function into a single objective function. Furthermore, a fuzzy decision strategy is introduced to find one of the
Pareto optimal fronts as the best compromised solution. The feasibility of the FSSA is tested on a three-area test
system for both the SAMFED and MAMFED problems. The results of FSSA approach are compared with other
heuristic approaches in the literature. Multi-objective performance indicators such as generational distance, spacing
metric and ratio of non-dominated individuals are evaluated to validate the effectiveness of FSSA. The results
divulge that the FSSA is a promising approach to solve the SAMFED and MAMFED problems while providing a
better compromise solution in comparison with other heuristic approaches.

Keywords: Fuzzy set theory, Heuristic optimization, Multi-area economic dispatch, Pareto-optimal front, Squirrel
search algorithm, Tie-line constraint

1 Introduction
The goal of Multi-Area Multi-Fuel Economic Dispatch
(MAMFED) is to decide the power delivered by every
generator in all the areas and the power flow between
the areas in order to lessen the total production cost and
pollutants outflows of the interconnected power system
considering multi-fuel alternatives of each generating
unit. The total load power is shared among the various

areas to decrease the fuel cost as well as the pollutant
emission, while the power scheduling between the zones
must consider the power balance, generator and tie-line
limits. Thus, the MAMFEED problem which has
received considerable attention in recent years, is
addressed as a large-scale highly non-linear multi-
objective optimization problem.

1.1 Literature review
Over the years, various classical multi-area power
generation scheduling methods have been proposed.
An efficient approach is applied in [1] for unit
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commitment and Economic Dispatch (ED) problems
with area import/export constraints. The proposed
approach is tested on the Texas utilities and Texas
municipal power pool systems. In [2], it suggests the
use of the Dantzig-Wolfe decomposition principle
regarding the revised simplex method and a fast-
decoupled power flow algorithm for constrained
Multi-Area ED (MAED) of power systems. A model
of large-scale multi-area power generation system is
developed in [3] and a rule-based heuristic strategy is
used to improve the generation schedule for every
zone. Reference [4] proposes a decomposition
approach which upgrades the scheduling process and
accelerates the execution of a large-scale multi-area
generation system in a real-time application. The
MAED problem is expressed as a capacitated nonlin-
ear network flow problem in [5] and is solved
through an Incremental Network Flow Programming
(INFP) approach. The results show that the INFP
approach is fast, robust, and extendable to large-scale
systems. An Improved Hopfield Neural Network
(IHNN) is presented to solve MAED problems with
transmission capacity constraints which shows that
IHNN achieves efficient and accurate solutions for
the two-area power system [6]. In [7], a Hopfield
Lagrange network is proposed to solve economic
emission dispatch (EED) problem with multiple fuel
alternatives (MFAs), while the best compromise from
the set of obtained solutions is found and compared
with that from the Lamda-Iteration method.
Despite the fact that these traditional strategies can

give a strong ideal solution, they experience the disad-
vantages of having non-smooth and non-convex object-
ive functions. Thus, these strategies do not offer
reasonable possibilities for dealing with the MAED prob-
lem when prohibited operating zones (POZs), valve
point loading (VPL), and MFAs are considered [8]. To
adapt to these challenges, numerous meta-heuristic
methodologies have been used to take care of enhance-
ment issues with complicated objectives [9]. The results
obtained by evolutionary approaches for complex opti-
mizing problems are good, which means these ap-
proaches offer a reasonable possibility for solving MAED
problems.
In recent years, swarm intelligence algorithms have

been broadly used to overcome the computational un-
predictability issues in the MAED problem. Reference
[10] proposes an efficient technique for MAED problems
using an Evolutionary Programming (EP) approach,
while the performance of the various evolutionary algo-
rithms, including the Real-Coded Genetic Algorithm
(RCGA), Particle Swarm Optimization (PSO), Differen-
tial Evolution (DE), and the Covariance Matrix Adapted
Evolution Strategy (CMAES), on MAED problems with

Karush–Kuhn–Tucker optimality conditions are exam-
ined [11]. The simulation results revealed that the
CMAES algorithm offers the best results and the
Nelder–Mead simplex method offers an optimal solution
in the shortest time among the different algorithms con-
sidered. The performance of different DE strategies en-
hanced with time-varying mutation is investigated and
analyzed to solve the reserve-constrained MAED prob-
lem [12]. The time varying DE approach is found to be
capable of determining better solutions than PSO with
time-varying acceleration coefficients. In addition, the
DE variant approaches are able to find the global best
solutions for large-scale systems, while basic DE suffers
from premature convergence.
A computationally efficient fuzzified PSO algorithm

is introduced in [13] to solve the security-
constrained MAED problem of an interconnected
power system. The inertia weight of the standard
PSO is made adaptive by using fuzzy logic strategy
to improve the convergence speed and avoid prema-
ture convergence. Artificial bee colony (ABC)
optimization is proposed to solve a MAED problem
with tie-line constraints, transmission losses, multiple
fuels, and valve point effects [14]. Evolutionary ap-
proaches such as DE, EP, and RCGA are applied to
analyze the efficiency of the ABC approach. The
simulation results show that the ABC approach con-
verges to a better solution than other comparable
approaches. Teaching learning-based optimization
(TLBO) has been applied to solve the MAED issue
[15]. The approach is tested on three different sys-
tems and the results reveal that the presented ap-
proach has the ability to provide better solutions
and exhibits greater robustness than DE, EP, and
RCGA. The different MAED models are solved by
employing Fast Convergence Evolutionary Program-
ming (FCEP) in [16] which uses Gaussian and Cau-
chy mutations to improve the convergence speed
and solution quality. The Hybrid Cuckoo Search Al-
gorithm (HCSA) which consolidates the cuckoo
search algorithm and TLBO to improve the perform-
ance of optimization process, is developed to solve
the MAED problem [17]. In [18], a hybrid DE-PSO
technique is used to address the MAED, reserve-
constrained MAELD, and reserve-constrained multi-
area ecological/economic dispatch problems. Sum
Differential Evolution with Particle Swarm Optimizer
(SDEPSO) is used along with the local (Pbest) opti-
mal value in a DE crossover operator. The simula-
tion results show that the hybrid algorithm achieves
a good balance between global search ability and
provision of better convergence and solution quality.
An Improved Grasshopper Optimization Algorithm

(IGOA) is introduced to deal with the MAED
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problem [19], in which a chaos mechanism is adopted
to handle the premature convergence of the grasshop-
per optimization algorithm. The simulation results
demonstrate that IGOA converges better than the
other approaches. Backtracking Search Algorithm
(BSA) is proposed to solve ED problems considering
VPL effects, POZs, and MFAs [20], while the MAED
problem is solved by combining Jaya and TLBO
approaches to simultaneously solve both non-smooth
and non-convex characteristics [21]. The Jaya algo-
rithm consistently attempts to find the best solution
and avoids the worst solution, and thus is endea-
voured to be successful by arriving at the best solu-
tion. A Parallel MAED (PMAED) is developed to
maintain the independency and transfer the required
power in each area [22], which is solved with convex
and non-convex fuel cost functions of different
complexities. A Newton Method based Distributed
Algorithm (NMDA) and Evolutionary PSO (EPSO)
algorithm are employed to solve Single-Area Economic
Dispatch (SAED) and MAED problems [23, 24], where
the virtual SAED formulation, backtracking line search
algorithm, and average consensus theory are embedded
in the NMDA approach. In the EPSO algorithm, the
GA operators such as mutation, crossover, and selec-
tion are employed to enable the search process. A
new heuristic approach, the Coulomb’s and Franklin’s
laws-based optimization (CFLBO) algorithm is devel-
oped to solve the non-convex economic and emission
dispatch problem [25]. These improved and hybrid
forms of heuristic approaches involve complicated
computation owing to the use of many control param-
eters. Thus, an efficient algorithm to solve MAED
problems to ascertain the optimum dispatch solutions
needs be developed.

1.2 Contributions
Recently, a new meta-heuristic algorithm, named as
Squirrel Search Algorithm (SSA) was proposed in [26].
SSA models the foraging activities of individual squirrels,
while each squirrel modifies its position using four
processes, namely:

(1) distributing the population,
(2) dynamic foraging behavior,
(3) seasonal adapting intelligence, and.
(4) random repositioning of individuals at the end of

winter season.

The unique features of SSA are as follows:

� The gliding constant is used in the location update
of squirrels which provides suitable steadiness
between exploration and exploitation.

� The predator presence behavior is employed to
abruptly change the squirrel locations which
enhances the exploration ability of the algorithm.

� A seasonal monitoring condition is used to prevent
the suggested algorithm from being trapped in local
optimal solutions.

� Levy distribution is used to find new solutions far
away from the current best solution which improves
the global exploration ability of the algorithm.

These features make SSA capable of overcoming the
normal drawbacks of other algorithms such as prema-
ture convergence, inadequate ability to find nearby ex-
treme points and absence of efficient constraints
handling mechanism. The advantages of the SSA ap-
proach are less execution time, ability to solve different
complex optimization problems and high capacity in
obtaining global optimum solutions. Thus, the SSA ap-
proach is able to provide solutions of better quality than
the existing heuristic approaches.
The main contributions of this paper are briefly sum-

marized as follows:

� For the first time, the application of the SSA
approach for solving the Single-Area Multi-Fuel ED
(SAMFED) and MAMFED problems in power sys-
tem is reported.

� A FSSA approach to solve the SAMFED and MAMF
ED problems is introduced. The proposed algorithm
involves the SSA approach, weighted sum approach
and fuzzy decision strategy. The weighted sum
approach is used to transfer the bi-objective func-
tions such as fuel cost and pollutant emission into a
single objective function, while the fuzzy decision
strategy is used to provide the best compromised so-
lution from the non-dominated solution set. The
FSSA approach successfully solves the SAMFED
problem such that the fuel cost and pollutant emis-
sion are simultaneously minimized while fulfilling
the power balance and generation limits.

� The SSA approach is successfully applied to solve
the MFMAED such that the total fuel cost is
minimized while fulfilling the system and area
constraints.

� The proposed algorithm is applied to a three-area
10-unit system to demonstrate its effectiveness in
solving the SAMFED and MAMFED problems. The
obtained results are compared with different state-
of-the-art heuristic approaches.

The structure of this paper is as follows. Section 2 pre-
sents the details of the SAMFED and MAMFED models,
while the recommended FSSA approach is presented in
Section 3. The implementation of the FSSA approach
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for the ED problems is discussed in Section 4 and in
Section 5, the numerical results are discussed and the
adequacy of the proposed FSSA approach is demon-
strated. Finally, Section 6 concludes the paper.

2 Problem formulation of multi-fuel economic
dispatch
2.1 SAMFED
2.1.1 Fuel cost objective function
The goal of the ED problem is to limit the total expense
of thermal units as:

Minimize F ¼
Xng

i¼1
Fi Pið Þ ð1Þ

In the ED problem, the fuel cost of each generating
unit is communicated as a quadratic function of its
capacity yield. As the generating units utilize different
fuel choices to create power and consider the valve point
impacts, the fuel cost function is expressed in (6).
The multi-fuel cost curves with and without VPL

impacts are shown in Fig. 1.

2.1.2 Emission objective function
The objective of the emission dispatch (EmD) problem
is to lessen the hazardous emissions as:

Minimize E ¼
Xng

i¼1
Ei Pið Þ ð2Þ

The emission objective function is similar to the fuel
cost function while it deals with all discharge types by
generation units. The model for emanation function
with MFA is introduced in (7).

2.1.3 Economic and emission dispatch (EED) function
The EED problem can be considered as bi-target work
with fuel cost and discharge as equalling objectives. This

bi-target function can be merged into a solitary target
function as:

Minimize FEED ¼ w� F þ h� 1 −wð Þ � E ð3Þ

where w is a primary function of rand [0, 1] which
bargains the fuel cost and emanation objectives. So the
above condition becomes ED target function when w = 1
and becomes EmD target when w = 0.

2.1.4 Power balance constraint
The total power generated from a set of committed units
must fulfil the total load demand, i.e.:

Xng

i¼1
Pi ¼ PD ð4Þ

2.1.5 Generator capacity limits
The real output power of thermal units need to be in
their minimum and maximum limits as:

Pi; min≤Pi≤Pi; max ð5Þ

Fi Pið Þ ¼
Fuel type 1; ai1 þ bi1Pi þ ci1P

2
i þ ei1 � sin f i1 � Pi; min − Pi

� �� ��� ��; Pi; min≤Pi≤Pi1

Fuel type 2; ai2 þ bi2Pi2 þ ci2P
2
i þ ei2 � sin f i2 � Pi; min − Pi

� �� ��� ��; Pi1 < Pi≤Pi2

: : : :
Fuel type k; aik þ bikPi þ cikP

2
i þ eik � sin f ik � Pi; min − Pi

� �� ��� ��;Pi;k − 1 < Pi≤Pi; max

8>><
>>:

ð6Þ

Ei Pið Þ ¼
Fuel type 1; αi1 þ βi1Pi þ γ i1P

2
i ; Pi; min≤Pi≤Pi1

Fuel type 2; αi2 þ βi2Pi þ γ i2P
2
i ; Pi1 < Pi≤Pi2

⋯
Fuel type k; αik þ βikPi þ γ ikP

2
i ; Pi;k − 1 < Pi≤Pi; max

8>><
>>:

ð7Þ

Fij Pij
� � ¼

Fuel type 1; aij1 þ bij1Pij þ cij1P
2
ij þ eij1 � sin f ij1 � Pij; min − Pij

� �� ���� ���;Pij; min≤Pij≤Pij1

Fuel type 2; aij2 þ bij2Pij2 þ cij2P
2
ij þ eij2 � sin f ij2 � Pij; min − Pij

� �� ���� ���; Pij1 < Pij≤Pij2

: : : :
Fuel type k; aijk þ bijkPij þ cijkP

2
ij þ eijk � sin f ijk � Pij; min − Pij

� �� ���� ���;Pij;k − 1 < Pij≤Pij; max

8>>>><
>>>>:

ð8Þ

2.2 MAMFED
2.2.1 Fuel cost objective function
The aim of the MAMFED problem is to find the
amount of power that can be efficiently generated in
one area and transferred to another area, and to
determine the economic fuel choice for each unit.
Since generators are provided with multi-fuel sources,
every generator needs to be defined with a few piece-
wise quadratic capacities superimposed by sine terms
mirroring the impact of changes in the type of fuel
while the generator must determine the most conser-
vative fuel to consume. The fuel cost function with
VPL and MFA impacts [14] is defined in (8).Fig. 1 Multi-fuel cost curve
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2.2.2 Power balance constraint
The total power generated by a set of accessible units
must satisfy the total load demand, tie-line power flow,
and transmission losses [9] as:

XMi

j¼1
Pij ¼ PDi þ PLi þ

X
z;z≠i

T iz ð9Þ

where i = 1, 2,. . ng, j = 1, 2,. .. Mi.

2.2.3 Generator capacity limits
The real output power of the thermal units should be in
the minimum and maximum limits as [9]:

Pij; min≤Pij≤Pij; max ð10Þ

2.2.4 Tie-line limit
Because of security basis, power transmitted through
various lines must not surpass their cutoff points [11].
The power transfer requirement between two regions is
characterized by:

− Tiz; min≤Tiz ≤Tiz; max ð11Þ

3 Brief overview of the FSSA approach
3.1 SSA
The hunt procedure starts when flying squirrels begin
scavenging [26]. During fall, squirrels look for nourish-
ment assets by skimming from one tree to the next. At
the same time, they change their areas and investigate
various regions of woods. As the climatic conditions are
sufficiently hot, they can meet their every day vitality
needs more rapidly on the eating routine of oak seeds
accessible in bounty and thus, they devour oak seeds
quickly after discovering them. Subsequent to satisfying
their day by day vitality prerequisite, squirrels scan for
ideal nourishment hotspot for winter (hickory nuts).
Capacity of hickory nuts will help them in keeping up
their vitality prerequisites in harsh climate, decrease the
expensive searching excursions and increase the likeli-
hood of endurance.
During winter, lost leaves spread in deciduous wood-

lands result an expanded danger of predation and thus,
squirrels become less dynamic but still remain active.
Toward the finish of winter season, squirrels again be-
come dynamic. This is monotonous procedure and
structures the establishment of SSA. The SSA approach
refreshes the places of squirrels as indicated by the ebb
and flow season, the sort of squirrels and if chasers
showing up.

3.1.1 Instate the population
Assuming the number of squirrels is N, and the upper
and lower limits of the pursuit space are XU and XL, the
N squirrels are arbitrarily created as:

Xi ¼ XL þ rand 1;Dð Þ � XU − XLð Þ ð12Þ
where Xi indicates the ith squirrel, (i = 1: N), rand () is an
random number in the range of 0 and 1, and D is the
measurement of the issue.

3.1.2 Group the population
SSA requires that there is only a single squirrel at each
tree, so for N squirrels, there are N trees in the woods.
Among the N trees, there is one hickory tree and Na oak
seed trees, while the rests are typical trees having no
nourishment. The hickory tree is the best nourishment
asset for the squirrels while the oak seed trees come the
second. Positioning the fitness estimations of the popu-
lace in rising request, the squirrels are separated into
three kinds:

� Squirrels situated at hickory tree (Wh);
� Squirrels situated at oak seed trees (Wa);
� Squirrels situated at ordinary trees (Wn).

3.1.3 Refresh the location of squirrels
The squirrels refresh their situations by skimming to the
hickory tree or oak seed trees as follows:

Xtþ1
i ¼ Xt

i þ dgGc Xt
ai − Xt

i

� �
if r2≥Pdp

Random location otherwise

�
ð13Þ

Xtþ1
i ¼ xti þ dgGc Xt

h − Xt
i

� �
if r3≥Pdp

Random location; otherwise

�
ð14Þ

Pdp is esteemed at 0.1 and indicates the chaser likeli-
hood. In the event that r > Pdp, no chaser shows up, and
the squirrels coast in the backwoods to discover the
nourishment and are protected. If r < Pdp, the chasers
show up, and the squirrels are compelled to limit the ex-
tent of exercises and are imperiled, and their locations
are migrated arbitrarily. dg is the skimming separation
that can be determined by:

dg ¼ hg
tan φð Þ ð15Þ

where hg is the constant estimated 8, tan (ɸ) indicates
the coasting point that can be determined by:

tan φð Þ ¼ D
L

ð16Þ

The drag power and lift power can be estimated as:
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D ¼ 1

2ρV 2SCD
ð17Þ

L ¼ 1

2ρV 2SCL
ð18Þ

3.1.4 Occasional changeover verdict and arbitrary
refreshing
Toward the start of every generation, SSA necessitates
that the entire populace is in winter, which implies that
the locations of all squirrels are updated by (11) and
(12). At the point when the squirrels are refreshed,
regardless the season, change is decided by the following
formulae:

Stc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1
Xt

ai;k − Xt
h;k

� �2
r

i ¼ 1; 2; ::;Na ð19Þ

Smin ¼ 10e − 6

365t= tmax=2:5ð Þ ð20Þ

If Stc < Smin, winter is finished and the season goes to
summer, otherwise the season is unaltered. At the point
when the season goes to summer, the squirrels who float
to Wh remain at the refreshed area, while the squirrels
skimming to Wa and not meeting with chasers move
their situations as follows:

Xtþ1
inew ¼ XL þ Le0vy xð Þ � XU − XLð Þ ð21Þ

Le’vy is the arbitrary walk model whose progression
complies with the Le’vy appropriation and can be deter-
mined by:

Le
0
vy xð Þ ¼ 0:01� α� ra

rbj j1β
ð22Þ

where α is determined as:

α ¼
Γ 1þ βð Þ � sin πβ

2

� �

Γ 1þβ
2

� �
� β� 2

β − 1
2ð Þ

2
4

3
5

1
β

ð23Þ

3.2 Fuzzy decision strategy
The objective functions, viz. economic and emission
dispatch shall be used in parallel in the multi-objective
EELD problem. However, this makes the comparison of
the two solutions difficult. Neither solution vector X1

nor X2 can be superior to each other if they are Pareto
optimal, because if superior result is obtained from X1

for an objective, X2 would offer improved performance
for another objective. Obtaining the best solution from
multiple non-dominated solutions is challenging in
multi-objective EELD problem, though it is always
possible to collate these outcomes and obtain the best

compromised solution. For achieving this, one has to
use the proper mechanism to combine both objectives
and ensure that it conforms to the target and preference
of the decision maker.
Researchers commonly use fuzzy set theory to arrive

at the best solution amongst many uncontrolled solu-
tions. It is implausible to achieve both least fuel cost
along with least emission as they are contrary to each
other. But it is feasible to build a dispatch option that
can optimize both. Fuzzy membership functions assign
Degree of agreement (DA) to each objective, and merit
of the objective is reflected by DA in a linear scale of 0
– 1 (worst to best). Fj is a solution in the Pareto-optimal
set in the jth objective function and is defined by a mem-
bership function as:

μ F j
� � ¼

1 if F j≤ Fmin
j

Fmax
j − F j

Fmax
j − Fmin

j

if Fmin
j ≤ F j≤ Fmax

j

0 if F j≥ Fmax
j

8>>><
>>>:

ð24Þ

For each non-dominated solution, the normalized
membership function μkD can be calculated as:

μkD ¼
P2

i¼1μ Fk
i

� �
PM

k¼1

P2
i¼1μ Fk

i

� � ð25Þ

The solution that contains the maximum of μkD μkD
based on cardinal priority ranking is the best compro-
mised solution, i.e.:

Max μkD : k ¼ 1; 2; ::;M
	 
 ð26Þ

4 Implementation of FSSA for SAMFED and MAMF
ED problems
The steps of the solution for MFED problem using FSSA
are as follows.

Step 1: Randomly generate the generation values
between lower and upper power outputs of each
generating unit in all solutions.
Step 2: Evaluate the objective values of all the squirrels
using (3).
Step 3: Sort the objective values of each squirrel’s
position in ascending order.
Step 4: Declare the flying squirrel with low fitness value
as on the hickory nut tree (optimal food source), the
next three best flying squirrels on the acorn tree
(normal food source) and the rest of the squirrels on
the normal trees (no food source).
Step 5: Update the positions of squirrels located on the
oak seed and normal trees using (12), (13) and (14).
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Step 6: Randomly relocate the positions of some
squirrels when seasonal monitoring condition is
satisfied.
Step 7: Repeat steps 2 to 6 until stopping criterion is
met.

Step 8: Increment the weight factor in step of 0.1 and
repeat steps 2 to 6, until the weight factor reaches
unity.

The membership value for each non-dominated solu-
tion sets which are acquired for different weight factors
using (24) is determined, and the position of squirrel on
hickory nut tree that procures maximum membership
value is chosen as the best compromising solution for
the MFED problem.
The flowchart of the FSSA approach to solve EELD

problem is shown in Fig. 2.

5 Numerical results and discussion
To demonstrate the effectiveness of the proposed FSSA
approach, it is applied to a three-area, 10-unit power
system for the SAMFED and MAMFED problems. The
coefficients of multi-fuel cost and emission, generation
limits of the generating units, and tie-line capacity limits
are taken from [7].

Fig. 2 Flow chart of FSSA algorithm for solving the
MFED problem

Table 1 Optimum FSSA parameters

Parameter Value

Number of hickory tree 1

Number of acorn trees (Na) 3

Predator presence probability (Pdp) 0.1

Gliding constant (Gc) 1.9

Maximum iteration number 200

Population size (Np) (Test system 2) 20

Density of air (ρ) 1.204 kgm−3

Speed (V) 5.25 ms−1

Surface area of body (S) 154cm2

Drag coefficient (CD) 0.6

Lift coefficients (CL) 0.675≤ CL ≤ 1.5

Table 2 Optimal solution acquired by the proposed approach
for fuel cost objective

Unit Fuel Types FSSA

1 2 218.5032

2 1 212.3104

3 1 280.4736

4 3 239.5643

5 1 278.5875

6 3 239.7953

7 1 288.0741

8 3 239.8211

9 3 426.4850

10 1 276.0857

Minimum cost ($/h) 623.8613

Emission (kg/h) 6460.9222
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The proposed FSSA is executed in Matlab 7.1 on an
Intel core i3 processor with 4GB RAM PC, for 50
autonomous trials to assess the solution quality and con-
vergence behavior. The parameter settings of the pro-
posed FBSSA are presented in Table 1.
Three scenarios are researched and the results of the

proposed FSSA are compared with Krill Herd Algorithm
(KHA), Exchange Market Algorithm (EMA) and other
state-of-art heuristic approaches.

Scenario 1. Minimization of the total fuel cost and total
pollutant emission individually in the SAMFED
problem.
Scenario 2. Minimization of both the total fuel cost and
the total emission level simultaneously in the SAMFED
problem.
Scenario 3. Minimization of the total fuel cost in the
MAMFED problem.

5.1 Scenario 1
Table 2 presents the optimal generation schedule ac-
quired by the fuel cost minimization of the SAMFED

using the proposed FSSA approach. The proposed
approach is compared with the known approaches such
as EMA, KHA, and BSA [20] in Fig. 3. As can be seen
from Fig. 3, the FSSA approach outflanks the aforemen-
tioned approaches with the lowest total fuel cost.
The optimal values of generating units obtained by the

FSSA for emission minimization are given in Table 3,
with the minimum emission value of 6042.5066 kg/h.
Figure 4 compares the results from different approaches,
which shows that the FSSA approach reduces emission
level by 9.31 kg/h and 12.07 kg/h compared to the KHA
and EMA approaches, respectively.

5.2 Scenario 2
For this scenario, the total fuel cost and emission of the
SAMFED are simultaneously minimized, so the objective
function of the EED given in (3) is minimized. In order
to provide the best trade-off, the weights w1 and w2 are
varied in the range of 0 to 1 in step of 0.1 so that their
sum is one. The non-dominated solution sets acquired
by the FSSA approach are depicted in Table 4, and the
solution corresponding to the maximum membership
value estimation is chosen as the BCS. It is seen from

Fig. 3 Performance comparison of the FSSA approach with
other techniques for fuel cost objective

Table 3 Optimal solution acquired by the FSSA approach for
emission objective

Unit Fuel Types FSSA

1 2 195.6476

2 1 209.3824

3 1 299.5748

4 3 256.2852

5 1 290.5376

6 1 168.3943

7 2 364.2906

8 3 260.6658

9 3 439.9363

10 1 215.2854

Fuel cost ($/h) 668.6195

Minimum Emission (kg/h) 6044.4789

Fig. 4 Performance comparison of the FSSA approach with
other techniques for emission objective

Table 4 Non-dominated solutions for various weighting values
acquired by the proposed FSSA approach

W1 W2 Fuel cost ($/h) Emission (kg/h) Membership value (μD)

1 0 623.7129 6469.4021 0.080396

0.9 0.1 628.4644 6394.3036 0.086413

0.8 0.2 632.7907 6321.5892 0.092708

0.7 0.3 637.5308 6255.6224 0.097025

0.6 0.4 641.9474 6195.3613 0.100820

0.5 0.5 644.7538 6174.6632 0.099919

0.4 0.6 649.7948 6149.9250 0.095957

0.3 0.7 654.8735 6121.4394 0.092635

0.2 0.8 659.9145 6095.9525 0.088814

0.1 0.9 664.9179 6071.2147 0.084916

0 1 670.7220 6042.5066 0.080396
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Table 4 that the BCS are determined at w1 = 0.6 and
w2 = 0.4 corresponding to μD = 0.100820. For the FSSA
algorithm, the total fuel cost is 641.9474 and the total
pollutant emission is 6195.3613 kg/h. Table 5 presents
the optimal generation schedule of the SAMFED prob-
lem by minimizing both the total fuel cost and emission.
The performance indices of the EED problem such as

fuel cost performance index (FCPI) and emission cost
performance index (ECPI) are further performed. FCPI
and ECPI can be expressed as:

FCPI ¼ Fbcs − Fmin

Fmax − Fmin
� 100 ð27Þ

ECPI ¼ Ebcs − Emin

Emax − Emin
� 100 ð28Þ

The performance indices of the FSSA approach are
compared with the results obtained using the KHA and
EMA approaches, as shown in Fig. 5. It is evident that
the performance indices acquired using the FSSA ap-
proach are superior to the other approaches, with lower
divergence. Figure 6 shows the Pareto optimal fronts
(POF) curves of different approaches. It is seen that the
POF curve of the FSSA algorithm remains closer to the

axes, which implies that the FSSA approach offers better
results than the KHA and EMA approaches.

5.3 Scenario 3
In this scenario, fuel cost minimization of MAMFED is
addressed. A 3-area, 10-unit test system is tested with
transmission losses, and VPL and MFA impacts taken
into consideration. Areas 1, 2, and 3 comprise four,
three and three generating units, respectively as dis-
played in Fig. 7. The total power demand of the system
is 2700MW, and the power demand shares of areas 1, 2,
and 3 are 50%, 25%, and 25% of the total load demand,
respectively. The power flow from one area to another is
restricted to 100MW. Table 6 presents the simulation
results obtained by the proposed SSA approach. It can
be seen that the optimal generation cost obtained by the
SSA approach is 654.4665 $/h, which is the lowest
among all the approaches. Area 1 imports power from
areas 2 and 3, while area 3 also exports power to area 2.
The results of the SSA approach are compared with

those of RCGA [14], ABC [14], TLBO [15], EPSO [24],

Table 5 BCS acquired by the FSSA approach

Unit Fuel Types FSSA

1 2 204.1769

2 1 213.7536

3 1 297.1947

4 3 254.9654

5 1 288.2184

6 1 189.5552

7 2 308.8693

8 3 236.4719

9 3 423.2964

10 1 283.4982

Fuel cost ($/h) 641.9474

Emission (kg/h) 6195.3613

Fig. 5 Performance comparison of the FSSA algorithm with
other techniques for EED

Fig. 6 POF curves obtained from various approaches

Fig. 7 Schematic diagram of the three-area system

Sakthivel and Sathya Protection and Control of Modern Power Systems            (2021) 6:11 Page 9 of 13



EMA and CFLBO approaches in Fig. 8, and it shows that
the proposed strategy outperforms the others with
regard to finding the best generation schedule.

5.4 Statistical analysis of the FSSA algorithm
5.4.1 Multi-objective performance indicators
The multi-objective performance indicators such as
generational distance (GD), spacing metric (SM) and
ratio of non-dominated individuals (RNI) are used to
examine the performance of the proposed approach
for Scenario 3.
The smaller estimations of GD and SM demonstrate

better union to the POF curve, and better conveyance
and assorted variety of the non-dominated solutions,
respectively. A closer estimation of one for RNI index
demonstrates that the greatest number of arrangements
in a populace are non-dominated. The GD, SM, and
RNI measures obtained by the proposed FSSA approach
in 50 autonomous trials are shown as box and whisker
plots in Fig. 9, which indicate that the FSSA algorithm

has estimated the smaller values regarding the GD and
SM indices, and closest to one for the RNI indicator.

5.4.2 Fuel cost improvement percentage
Fuel cost improvement percentage (IP) is the ratio of
fuel cost difference obtained between two approaches to
the higher value of fuel cost obtained, expressed as a
percentage as:

IP ¼ fuel cost of the compared approach − fuel cost of the suggested approach
fuel cost of the compared approach

� 100

ð29Þ

The IPs obtained by the FSSA approach and the exist-
ing heuristic approaches for scenario 3 are compared in
Fig. 10, ranging from 0.113% to 0.5234%. It is note-
worthy that the IP of the FSSA approach is high for
MAMFED with VPL impacts. Thus, it can conclude that
the proposed FSSA approach provides better results than
the other approaches.

5.4.3 Computational efficiency
Tables 2, 5, and 6 show that the minimum fuel costs
achieved by the FSSA approach are 623.7129, 641.9474,
and 654.4665$/h for scenarios 1, 2, and 3, respectively.
These costs are lower than the ones presented in recent
literature. Figure 11 shows the number of function
evaluation adopted by the FSSA and EMA strategies for
the various scenarios, indicating lower number of func-
tion evaluation with FSSA. Thus, the FSSA technique is
more computationally effective than the EMA strategy.

Table 6 Best dispatch solution incurred by the proposed SSA algorithm for MAMFED problem

Unit Pij,min (MW) Pij,max (MW) Fuel types Power generation (MW)

P1,1 196 250 2 225.7694

P1,2 157 230 1 211.5842

P1,3 388 500 2 491.3265

P1,4 200 265 3 238.5371

P2,1 190 338 1 252.6869

P2,2 200 265 3 235.7538

P2,3 200 331 1 264.7952

P3,1 200 265 3 236.4286

P3,2 213 370 1 330.8961

P3,3 200 362 1 247.9518

T21 99.9792 PL1 17.2813

T31 100.0848 PL2 9.8161

T32 31.5594 PL3 8.6328

Fuel cost ($/h) 653.8601

Fig. 8 Comparison of generation costs incurred by various
approaches for scenario3
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5.4.4 Convergence graph
The convergences of the EMA and FSSA approaches are
compared in Fig. 12. As shown, the FSSA approach
requires lower number of iterations to converge to the
globally optimal solution.

6 Conclusion
The MAMFED problem, as an imperative issue in
modern power system analysis, is addressed in this
paper. The optimal generation schedule of all com-
mitted units and power transfer between the areas
through tie-lines are determined. The FSSA approach
is used to solve the SAMFED and the MAMFED
problems, while the transmission line losses, VPL
impacts, and tie-line limits of the power system are
addressed. The bi-objective function is transferred
into a single objective function by weighted sum ap-
proach. Moreover, a fuzzy decision strategy is intro-
duced to find one of the Pareto optimal fronts as
the best compromised solution. To demonstrate the
effectiveness of the FSSA approach in terms of solu-
tion quality, computational efficiency and conver-
gence speed, it is used to solve the MFED problems
with three different scenarios and the results are
compared with other existing approaches. The
results prove that the proposed FSSA approach is an

efficient method for solving the MFMAED problem
and can provide better compromised solution than
the other approaches. This research work not only
offers an advanced optimizer for the MFMAED
problem but also advances the use of the evolution-
ary approaches in the energy optimization domain.
For future work, it will be intriguing to implement
this compelling approach to solve other economic
operation problems of hybrid wind-solar-thermal
power systems.

7 Nomenclature

ai, bi, ci cost coefficients of generator i
aij, bij, cij cost coefficients of generator i in area j
CD drag coefficient
CL lift coefficient
di, ei cost coefficients of the VPL effect of generator i
dg gliding distance
D drag force
eij, fij cost coefficients of the VPL effect of generator i
in area j
Ei emission of the generator i
Fi fuel cost of the generator i

Fig. 9 Boxplots of multi-objective performance measures

Fig. 10 Comparison of IPs obtained by various approaches
for scenario 3

Fig. 11 Comparison of function evaluation adopted by
various scenarios
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Fij(Pij) fuel cost of the generator i in area j
Fj
max Fmax

j and Fj
min Fmin

j maximum and minimum

values of jth objective function respectively
Fbcs and Ebcs fuel cost and emission attained by EED
Fmin and Emax fuel cost and emission attained by ED
minimization respectively
Fmax and Emin fuel cost and emission attained by EmD
minimization respectively
Gc Gliding constant
h price penalty factor in $/h
hg gliding height
IP improvement percentage
k number of fuel alternatives
L lift force
Mi number of participated generators in area i
M number of non-dominated solutions
n maximum number of objects
ng total number of generating units
PD power demand
Pij Real power generation of generator j in area i
Pi,min, Pi,max minimum and maximum generation of
unit i
Pij,min, Pij,max Minimum and maximum generation j in
area i
Pdp predator presence probability
ra and rb randomly distributed numbers in [0, 1]
r1, r2 and r3 random numbers in the range of [0, 1]
S surface area of body
Smin minimum value of seasonal constant
t current iteration
tmax maximum iteration value
Tiz tie line power stream from area i to area z
Tiz, max maximum tie line power stream from area i to
area z
-Tiz, max Maximum tie line power stream from area z to
area i
V speed
w weight or compromise factor

Xh position of squirrel individual which reached the
hickory tree
XL, XU lower and upper bounds of squirrel individual
xj
min and xj

max lower and upper limits of variable j
tan ( ) gliding angle
β constant
ρ density of air emission coefficients of generator i
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