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Abstract

In a deregulated power system uncertainty exists and lack of sufficient damping can lead to Low Frequency
Oscillations (LFO). The problem can be addressed using robust Power System Stabilizers (PSS). In this paper, an
optimal procedure to design a robust PID-PSS using interval arithmetic for the Single Machine Infinite Bus (SMIB)
power system is proposed. The interval modelling captures the wide variations of operating conditions in bounds
of system coefficients. In the proposed design procedure, simple and new closed loop stability conditions for an
SMIB interval system are developed and are used to design an optimum PID-PSS for improving the performance of
an SMIB system. The optimum PID-PSS is attained by tuning the parameters using the FMINCON tool provided in
MATLAB. The robustness of the proposed PID-PSS design is validated and compared to other notable methods in
the literature when the system is subjected to different uncertainties. The simulation results and performance error
values show the effectiveness of the proposed robust PID-PSS controller.
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1 Introduction
Synchronous generators are equipped with high gain
AVRs to enhance stability margins. However, although
high gain AVRs improves the synchronizing torque they
have a negative effect on the damping torque. This could
result in low frequency oscillation. Transmission net-
works connected by weak lines are also susceptible to
low frequency oscillation. To overcome these problems,
synchronous generators are equipped with PSS to pro-
vide auxiliary signals to the excitation system [1–7]. The
design of conventional PSS parameters is usually based
on a fixed operating condition, and hence variation in
the operating condition may cause poor performance of
PSS and sometimes lead to system instability.
Much research has been carried out in PSS parameter

tuning for a wide range of operating conditions that

include application of modern tools like ANN and Fuzzy
Logic, optimization techniques, FACTS, adaptive con-
trollers and robust controllers etc. A power system is
highly nonlinear and therefore PSS design using ANN
[8, 9] assures good dynamic stability. However, it re-
quires a good training data set covering all types of un-
certainties in the system. This is difficult to realize in
practice. On the other hand, extensive previous know-
ledge of system behavior is required for Fuzzy Logic
application [10, 11]. Metaheuristic methods [12–18] like
PSO, GA, Harmony Search, Fire-fly and Whale
Optimization are also used for tuning PSS parameters.
In [19] SVC provided with a supplementary damping
controller (SDC) is developed for suppression of inter
area oscillations, and a PI controller is designed using
Kharitonov’s theorem by stabilizing sixteen transfer
functions. Various techniques have been proposed for
the coordination control of PSS and FACTS devices
[20–22]. The MRACs proposed in [23] require continu-
ous measurements to determine the error between
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system response and model reference, while a fuzzy ob-
server and regulator are designed in [24, 25], and suffi-
cient conditions are derived in terms of LMI
inequalities. Methods such as pole placement [26] using
state feedback require all the state variable information,
whereas model uncertainties are presented as a linear
fractional transformation in [27] and the controller is
designed using a quadratic performance index resulting
in a controller with the same order as the plant. Robust
PSS design using H∞ & μ synthesis are described in [28–
31], although finding the weighting factor is an add-
itional task in the H∞ method. The LMI technique [32–
34] locates all the closed loop poles in a pre-specified
bound. The problem of existing uncertainties in the con-
troller gains is addressed in [35] using the so-called re-
silient control. Soliman et al., [36, 37] use Kharitonov’s
theorem to design a lead-lag compensator by stabilizing
eight extreme polynomials using PSO. In [38] a multi-
objective function is developed to minimize the over-
shoots to keep the control signal within limits. A differ-
ent approach for robust PSS is developed in [39] using
root locus analysis. Design of a robust three-term PSS is
given in [40], while necessary and sufficient conditions
are derived by using the interval Routh-Hurwitz criter-
ion in [41]. In [42], two controllers, one for excitation
and the other for the governor, are proposed to enhance
system stability in the case of controller failure. The PSS
design for a multi-machine system is developed using a
whale optimization technique [43], while the effect of
penetration of wind farms on small signal stability is
studied in [44]. To cater for the multiple requirements
of power systems, a wide area damping controller is de-
signed in [45]. Stability conditions for fixed and interval
polynomials are addressed in [46, 47], while the MFAC
proposed in [48] damps the inter-area LFO. A multi-
band fractional order PSS design is reported in [49], in
which three different frequency bands instead of one are
used to damp the LFO, and the advantages of FO-PSS
are exploited. In [50], a frequency response matching
technique is used to find suitable PSS and TCSC con-
troller parameters. The design of control devices for
engineeering applications are explained in [51], whereas
the practical data of the Barka-II power station in Oman
is used and PSS is designed for one of the gas units in
[52].
In most existing methods, control parameters are only

tuned for a few operating points and therefore, the con-
troller may fail or degrade its performance when signifi-
cant deviation in the system operating state occurs.
Furthermore, to deal with significant load variation, for
each loading condition, e.g., light, nominal or heavy, a
separate controller is proposed for the system to ensure
the desired dynamic response. This would add additional
cost to the system. Some of the proposed methods

require extensive system variable information or ex-
haustive eigenvalue analysis. Therefore, as the system
size increases, the complexity and computational efforts
also increase. On the other hand, a controller design
employing interval systems uses the following methods:
1) Eight extreme polynomials; 2) The Interval Routh
Hurwitz criterion; and 3) Image set polynomials for
1024 operating conditions. Even though these methods
exhibit robust stability, they require high computational
effort. To overcome the above issues, this paper presents
a systematic procedure to develop simple and new sta-
bility conditions for an interval system. The main advan-
tage of the proposed method is that a single controller
with fixed parameters can cope with the uncertainties in
the system for a wide range of operating conditions
without compromising the desired dynamic perform-
ance. Since the controller design formulation is based on
system coefficients rather than system variables, the con-
troller exhibits robust stability and performance for un-
modelled dynamics like variations in transmission line
reactance and machine inertia etc.
In order to eliminate the limitations and drawbacks of

the existing methods, in this research work, an SMIB
system with varying operating conditions over a speci-
fied range, i.e., P ϵ [0.2, 1.2] and Q ϵ [− 0.4, 0.4], is
considered. This represents fourth-order 1024 linear
models (transfer functions) and extreme values are taken
as lower and upper coefficients of the interval system. A
robust PID-PSS is designed for the SMIB interval
system, one that provides sufficient damping for the
entire 1024 operating states. The PID-PSS parameters
are obtained using the newly developed stability condi-
tions for interval systems, and to ensure the robust
performance of the proposed PID-PSS, an objective
function at a nominal operating point is defined. The
parameters of the proposed controller are tuned by
minimizing this objective function while satisfying the
specified constraints. To test the efficacy of the proposed
controller, the system is subjected to mechanical step
disturbance under a wide range of operating states, and
simulation results with the proposed controller are com-
pared to the methods in the literature.
This paper is organized as follows. Section 2 describes

the problem formulation and Section 3 develops the new
stability conditions for robust stability of an SMIB
interval system. Section 4 describes the proposed design
procedure for tuning the PID-PSS parameters, and
Section 5 presents the simulation results to validate the
proposed controller. Finally, Section 6 draws the
conclusion.

2 Problem formulation
Considering a power system consisting of a single ma-
chine connected to an infinite bus as shown in Fig. 1,
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the dynamic state of the system can be given by the fol-
lowing non-linear equations:

ω
: ¼ Tm − Teð Þ

M
; δ
:

¼ ω0ω;Te ¼ E
0
qiq þ x

0
d − x

0
q

� �
idiq

E
0
q

:

¼ − Eq þ Efd

T
0
do

;Efd

:

¼ 1
TE

− Efd þ kEðVref − V t
� �

9>>=
>>;

ð1Þ

where δ is the rotor angle, ωo and ω are the synchronous
speed and rotor angular speed, respectively. M is the in-
ertia constant, Tm is the mechanical torque and Te is the
electrical torque. Eq

' is the field flux in transient state,
Tdo' is the d-axis open circuit time constant, and Xd' and
Xq' are the d-and q-axis transient reactances respectively.
Efd is the field voltage, KE and TE are the respective gain
and time constant of the exciter, id and iq are the d- and
q-axis armature current components, respectively. Vref

and Vt are the reference and terminal voltages, respect-
ively. These equations can be linearized around the
operating point for small signal stability analysis. This is
shown by the block diagram in Fig. 2, developed by
Demello and Concordia [1] known as the Heffron-
Pilliphs model.

Except k3, the parameters of the model k1-k6 are load
dependent and their analytical expressions are given in
[37]. The transfer function of the plant without PSS can
be obtained using Manson’s rule for Fig. 2 and is given
as:

G sð Þ ¼ Δω sð Þ
ΔVref sð Þ

¼ − bs
a4s4 þ a3s3 þ a2s2 þ a1sþ ao

ð2Þ

The coefficients of the transfer function are:

a4 ¼ MTTE; a3 ¼ M T þ TEð Þ; a2 ¼ M þ 314k1TTE þ kEk3k6M
a1 ¼ 314k1 T þ TEð Þ − 314k2k3k4TE

a0 ¼ 314 k1 − k2k3k4 − kEk2k3k5 þ kEk1k3k6ð Þ; b ¼ kEk2k3

9=
;

ð3Þ

where T ¼ k3T
0
do .

The coefficients of the transfer function depend on the
machine inertia constant, transmission line reactance,
field time constant, machine loading conditions and ex-
citer time constant. The load on the system varies con-
tinuously and hence the coefficients change for a given

Fig. 1 Basic components of a Single-machine infinite bus power system

Fig. 2 Linearized model of the SMIB
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system. As the operating point is varied over a specified
range, i.e., P ϵ [Pmin, Pmax] and Q ϵ [Qmin, Qmax], the co-
efficient upper and lower bounds can be determined.
Then, the transfer function can be approximated by the
following interval polynomial [53]:

G sð Þ ¼ N s; bð Þ
D s; að Þ ¼

− b − ; bþ
� �

s

a −
4 ; aþ4½ �s4 þ a −

3 ; aþ3½ �s3 þ a −
2 ; aþ2½ �s2 þ a −

1 ; aþ1½ �sþ a −
0 ; aþ0½ �

ð4Þ
where

a −
i ¼ P;Q aið Þ; aþi ¼ P;Q aið Þ; b − ¼ P;Q bð Þ; bþ ¼ P;Q bð Þ

for i = 1,2,3,4.
For some operating points, the open loop system is

unstable. Hence, a controller needs to be designed to ro-
bustly stabilize the system for all operating conditions.
Figure 3 shows the equivalent block diagram of the
closed loop system, where Gc(s) is the transfer function
of the controller and U(s) is the controller output.
This paper presents a systematic procedure to design a

robust PID-PSS with fixed parameters while the operat-
ing point is varied over a specified range, i.e., P ϵ [Pmin,
Pmax] and Q ϵ [Qmin, Qmax]. The stability of the interval
polynomials is addressed in [46] using the Nie [47] con-
ditions for a fixed polynomial. New necessary and suffi-
cient conditions for SMIB system are then developed to
design the controller parameters of the robust PID-PSS
for a specified range of operating conditions.

3 Development of new stability conditions for
robust stability of an SMIB system
A set of real interval polynomials of degree ‘n’ is consid-
ered to be in the form of:

D s; að Þ ¼ ans
n þ an − 1s

n − 1 þ :…………þ a1sþ a0 ð5Þ
where the real coefficient ai varies within a range of
lower and upper bounds, i.e.:
ai ¼ ½a −

i ; aþi � for i = 1,2,3…..n.
It is assumed that the degree of the polynomial re-

mains invariant over the family.

Such a set of polynomials is called a real interval family
and is referred to as an interval polynomial. The set of
polynomials given by (5) is stable if and only if each and
every element of the set is a Hurwitz polynomial. The ne-
cessary and sufficient conditions for the robust stability of
interval polynomial (5) are developed using the algebraic
stability criterion for fixed polynomials due to Nie [47]
and are described below.

3.1 Nie stability conditions for a fixed polynomial
Consider a real fixed polynomial of degree ‘n’ of the
form:

Q sð Þ ¼ dns
n þ dn − 1s

n − 1 þ :…………þ d1sþ d0 ð6Þ

3.1.0.1 Lemma 3.1.1:
A necessary condition so that the roots of Q(s) lie in the
left half plane is:

di > 0 for i ¼ 0; 1; 2::……n
didiþ1 > di − 1diþ2 for i ¼ 1; 2………n‐2

�
ð7Þ

3.1.0.2 Lemma 3.1.2:
A sufficient condition so that the roots of Q(s) lie in the
left half plane is:

di > 0 for i ¼ 0; 1; 2………n
0:4655didiþ1 > di − 1diþ2 for i ¼ 1; 2………n‐2

�

ð8Þ

3.2 Stability conditions of the SMIB system with interval
coefficients
The above stability conditions for a fixed polynomial
due to Nie [47] are used to obtain the stability condi-
tions for an SMIB system with interval polynomial.
These are developed from [46].

3.2.0.1 Lemma 3.2.1:
The interval polynomial D(s, a) defined in (5) is Hurwitz
for all ai∈½a −

i ; aþi � where i = 0,1,2,3….. n, if the following
necessary conditions are satisfied:
ai > 0and aiai + 1 > ai − 1ai + 2.
These conditions in interval bounds are simplified into

the following form:

aþi ≥a
−
i > 0 for i ¼ 0; 1; 2; 3:……n

a −
i a −

iþ1 > aþi − 1a
þ
iþ2 for i ¼ 1; 2:; 3:……n‐2

�
ð9Þ

3.2.0.2 Lemma 3.2.2:
The interval polynomial D(s, a) defined in (5) is Hurwitz
for all ai∈½a −

i ; aþi � where i = 0,1,2,3…..n, if the following
sufficient conditions are satisfied:
ai > 0and 0.4655aiai + 1 > ai − 1ai + 2.Fig. 3 Equivalent block diagram for the closed-loop system
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These conditions in interval bound are simplified into
the following form:

aþi ≥a
−
i > 0 for i ¼ 0; 1; 2; 3:……n

0:4655a −
i a −

iþ1 > aþi − 1a
þ
iþ2 for i ¼ 1; 2:; 3:……n‐2

�

ð10Þ
Therefore, for order n = 4 the stability conditions for

the SMIB power system are given by:

aþ0 ≥a
−
0 > 0; aþ1 ≥a

−
1 > 0; aþ2 ≥a

−
2 > 0; aþ3 ≥a

−
3 > 0 and aþ4 ≥a

−
4 > 0

aþ0 a
þ
3

a −
1 a −

2
< 0:4655 and

aþ1 a
þ
4

a −
2 a −

3
< 0:4655

9=
;

ð11Þ
Using these stability conditions the robust PID-PSS

controller for the SMIB system under large uncertainty
is developed in the following section.

4 Procedure for designing robust PID-PSS of a
SMIB system
Power plants in the real world operate under large
uncertainties and robust controllers that can stabilize
the plants for all the disturbances under all operating
conditions are required. This necessitates the develop-
ment of a new design procedure for determining a
robust PID-PSS for an SMIB power system under large
uncertainties. The structure of the PID-PSS considered
in this work is shown in Fig. 4. As shown, the function
of the washout block is to make the PSS inactive under
a steady state condition, sudden rejection of heavy loads
or system islanding conditions. The gain of the washout
block is almost unity and the phase shift is negligible.
The addition of the block results in an increase in the
number of constraints due to increase in the order of
the system. Hence, in the proposed design procedure,
the block is omitted, while it is included when validating
the efficacy of the controller.
To accommodate the uncertainties of the plant, P and Q

are considered in the present work to vary over a wide
range, i.e., P ϵ [Pmin, Pmax] and Q ϵ [Qmin, Qmax] with a
certain step size.
Step 1: Obtain the SMIB model in transfer function

form. The coefficients of the transfer function (2) are
computed using (3) for all the operating conditions to
obtain the extreme values of the coefficients, given by:

a4 ¼ a −
4 ; aþ4

� �
; a3 ¼ a −

3 ; aþ3
� �

; a2 ¼ a −
2 ; aþ2

� �
;

a1 ¼ a −
1 ; aþ1

� �
; a0 ¼ a −

0 ; aþ0
� �

; b ¼ b − ; bþ
� � �

ð12Þ

Step 2: Substitute the above values of coefficients in
(2) to obtain the open loop plant transfer function of the
SMIB in the interval system given as:

G sð Þ ¼ − b − ; bþ
� �

s

a −
4 ; aþ4½ �s4 þ a −

3 ; aþ3½ �s3 þ a −
2 ; aþ2½ �s2 þ a −

1 ; aþ1½ �sþ a −
0 ; aþ0½ �

ð13Þ
Step 3: Consider the transfer function of the PID-PSS

as:

GC sð Þ ¼ kp þ ki
s
þ kds ð14Þ

where kp, ki and kd are the proportional, integral and de-
rivative constants of the PID controller, respectively.
Step 4: From Fig. 3, the closed loop transfer function

is:

T sð Þ ¼ N s; bð Þ
D s; að Þ ¼

G sð Þ
1 −G sð ÞGc sð Þ ð15Þ

Substituting (13) and (14) into (15), the closed loop
transfer function is:

T sð Þ ¼ − b − ; bþ
� �

s

a −
4 ; aþ4

� �
s4 þ a −

3 ; aþ3
� �

s3 þ a −
2 þ b − kd; a

þ
2 þ bþkd

� �
s2

þ a −
1 þ b − kp; a

þ
1 þ bþkp

� �
sþ a −

0 þ b − ki; a
þ
0 þ bþki

� �
ð16Þ

Step 5: From (16), the characteristic equation is given
by the following interval polynomial as:

D s; að Þ ¼ a −
4 ; aþ4

� �
s4 þ a −

3 ; aþ3
� �

s3 þ a −
2 þ b − kd; a

þ
2 þ bþkd

� �
s2þ

a −
1 þ b − kp; a

þ
1 þ bþkp

� �
sþ a −

0 þ b − ki; a
þ
0 þ bþki

� �
�

ð17Þ
Step 6: Determine the stability constraints by applying

the new stability conditions given in (11) to (17) as:
Constraint 1:

aþ0 þ bþ�ki
� ��aþ3� �

a −
1 þ b − �kp

� �� a −
2 þ b − �kdð Þ� � − 0:4655 < 0 ð18Þ

Constraint 2:

aþ1 þ bþ�kp
� ��aþ4� �
a −
2 þ b − �kdð Þ�a −

3ð Þ − 0:4655 < 0 ð19Þ

Constraint 3:

− a −
2 − b − �kd

� �
< 0 ð20Þ

Constraint 4:

− a −
1 − b − �kp

� �
< 0 ð21Þ

Fig. 4 Block diagram of PID-PSS
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Constraint 5:

− a −
0 − b − �ki

� �
< 0 ð22Þ

Step 7: To find the controller parameters that exhibit
robust performance over the entire range of operating
conditions, an objective function is considered as:

Jmin ¼ kp − kpo
kpo

				
				
2

þ ki − kio
kio

				
				
2

þ kd − kdo
kdo

				
				
2

ð23Þ

where kpo, kio and kdo are the PID-PSS controller param-
eters at the nominal operating point.

Step 8: The FMINCON function in MATLAB [54],
which solves constraint nonlinear optimization problems,
is used to obtain the robust PID-PSS parameters, i.e., kp,
ki and kd, by minimizing the objective function (23) while
satisfying the developed five constraints (18)–(22). It
starts with an initial guess value and finds the minimum
of the defined objective function. An interior point algo-
rithm is used in the present work to obtain the optimal
controller parameters. The flow chart that represents the
proposed design algorithm for obtaining the robust PID-
PSS parameters is shown in Fig. 5.

5 Validation, simulation results and discussion
5.1 Case study I
The plant shown in Fig. 1 with the machine data
given in [37] is considered, and P and Q vary within
a wide range of operating conditions, i.e., P ϵ [0.2,
1.2] and Q ϵ [− 0.4, 0.4], with a suitable step size to
have 1024 mesh points. The extreme values of the co-
efficients are as follows:

a4 ¼ 1; 1½ �; a3 ¼ 22; 22½ �; a2 ¼ 64; 106½ �;
a1 ¼ 388; 1009½ �; a0 ¼ 392; 2650½ �; b ¼ 2:7; 12:4½ �

�
ð24Þ

Substituting (24) into (13) obtains the open loop trans-
fer function of the plant without PID-PSS controller as:

G sð Þ ¼ Δω sð Þ
ΔVref sð Þ

¼ − 2:7; 12:4½ �s
1; 1½ �s4 þ 22; 22½ �s3 þ 64; 106½ �s2
þ 388; 1009½ �sþ 392; 2650½ �

ð25Þ

To determine the stability of the open loop system,
the value of the constant k5 is computed for all 1024 op-
erating states and is shown in Fig. 6 using a mesh plot.
From Fig. 6, it is observed that the constant k5 is nega-
tive for some operating points, for example under high
active power and leading power factor, the system is
relatively more unstable compared to other operating
conditions. To illustrate the damping characteristics of

Fig. 6 The constant k5 of the open loop system for all 1024
operating conditionsFig. 5 Flow chart for the proposed robust PID-PSS design
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the open loop system, the ζmin for all 1024 operating
points are calculated and are shown in Fig. 7. For some
operating points, ζmin is negative, indicating poor damp-
ing characteristics, which can cause the system to be-
come unstable under uncertainties. A robust PID-PSS
controller that makes the closed loop system stable for
all 1024 operating states is considered as given by (14).
From (16), the resulting closed loop transfer function of
the plant is:

T sð Þ ¼ − 2:7; 12:4½ �s
1; 1½ �s4 þ 22; 22½ �s3 þ 64þ 2:7kd; 106þ 12:4kd½ �s2
þ 388þ 2:7kp; 1009þ 12:4kp
� �

sþ 392þ 2:7ki; 2650þ 12:4ki½ �
ð26Þ

From (26) the characteristic equation of the closed
loop transfer function is:

D s; að Þ ¼ 1; 1½ �s4 þ 22; 22½ �s3 þ 64þ 2:7kd; 106þ 12:4kd½ �s2 þ 388½
þ2:7kp; 1009þ 12:4kp

�
sþ 392þ 2:7ki; 2650þ 12:4ki½ �

�

ð27Þ
Applying the new stability conditions in (18)–(22) to

(27), the following inequality stability constraints are
obtained:
Constraint 1:

2650þ 12:4ki½ ��22
388þ 2:7kp
� �� 64þ 2:7kd½ � − 0:4655 < 0 ð28Þ

Constraint 2:

1009þ 12:4kp
� �
64þ 2:7kd½ ��22 − 0:4655 < 0 ð29Þ

Constraint 3:

− 64 − 2:7kd < 0 ð30Þ
Constraint 4:

− 388 − 2:7kp < 0 ð31Þ
Constraint 5:

− 392 − 2:7ki < 0 ð32Þ
From (30)–(32), the minimum limits for kp, ki and kd

for robust stability can be obtained as:

kmin
p ¼ − 143; kmin

i ¼ − 145; and kmin
d ¼ − 23 ð33Þ

The newly proposed sufficient conditions given by (28)
and (29) can be plotted in MATLAB using ezplot as
shown in Fig. 8. The Constraint 1 is plotted for different
values of ki, and it can be seen that the stable region de-
creases with the increase of ki from ‘-145’.The minimum

Fig. 8 Stable and unstable regions in the kd-kp plane with a fixed ki for an interval polynomial using proposed stability conditions

Fig. 7 The minimum damping ratio (ζmin) of the open loop
system for all 1024 operating states
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limits for gains are obtained using the new necessary
conditions while the maximum limits are arbitrarily
chosen. The plot shows the stable and unstable regions
obtained from the newly developed stability conditions.
Also note that there are a set of controller parameters
that can stabilize the plant for all 1024 operating
conditions.
The plant characteristic equation at the nominal oper-

ating point is given by:

D sð Þ ¼ s4 þ 22s3 þ 97:836þ 8:768kdoð Þs2þ
856:299þ 8:768kpo
� �

sþ 2042:7153þ 8:768kioð Þ
�

ð34Þ
From [51] the optimum coefficients of D(s) that

minimize the Integral Time Absolute Error (ITAE) for a
step input are given by:

D sð Þ ¼ s4 þ 2:1ω0s
3 þ 3:4ω2

0s
2 þ 2:7ω3

0sþ ω4
0 ð35Þ

Comparing (34) and (35), the controller parameters at
the nominal operating point are:

kpo ¼ 256:376; kio ¼ 1129:28and kdo ¼ 31:4 ð36Þ
Since the plant normally operates at the nominal oper-

ating point the error between the robust controller pa-
rameters and controller parameters at the nominal
operating point is minimized. The objective function is
obtained by substituting (36) into (23) as:

Jmin ¼ kp − 256:376
256:376

				
				
2

þ ki − 1129:28
1129:28

				
				
2

þ kd − 31:4
31:4

				
				
2

ð37Þ

The optimal parameters of PID-PSS are obtained by
minimizing (37) subject to satisfying the set of inequality
constraints (28)–(32). The proposed method is simulated
in MATLAB using FMINCON function to solve the set
of non-linear inequality constraints, and the obtained

optimal controller parameters that robustly stabilize the
plant for all 1024 operating conditions are:

kp ¼ 98:8226; ki ¼ 30and kd ¼ 57:1044 ð38Þ

5.2 Validation of relative stability (σmax) and minimum
damping ratio (ζmin)
The objective of the proposed work is to design a robust
PID-PSS that meets the desired closed loop response for
uncertainties present in the system. To achieve the desired
response, it must have a minimum damping ratio of 0.25
and relative stability ‘σ’, i.e., the maximum real part of the
roots, must be less than − 0.3, so that system oscillation
would settle within 10–15 s. To illustrate the effectiveness
of the proposed controller, the relative stability (σmax) and
minimum damping ratio (ζmin) of the closed loop system
for all 1024 operating points are computed and are shown
in Figs. 9 and 10, respectively.

Fig. 10 The minimum damping ratio of the closed loop
system for all 1024 operating conditions

Fig. 9 Relative stability of the closed loop system for all
1024 operating conditions

Table 1 Relative stability and minimum damping ratio for xe =
0.4Ω with P and Q in p.u

Q P = 0.2 P = 0.4 P = 0.6 P = 0.8 P = 1 P = 1.2

Relative Stability(σmax)

−0.4 −0.5991 − 0.9047 − 1.2777 −1.2703 − 1.2601 − 1.2488

−0.2 − 1.2424 − 1.2948 −1.3183 − 1.3247 −1.3232 − 1.3177

0 −1.4383 − 1.3757 −1.3809 − 1.3872 −1.3888 − 1.3867

0.2 −1.8060 − 1.5422 −1.4889 − 1.4746 −1.4688 − 1.4642

0.4 − 2.3851 − 1.7942 − 1.6495 −1.5958 − 1.5709 −1.5566

Minimum damping ratio (ζmin)

−0.4 0.3701 0.3517 0.3478 0.3461 0.3451 0.3438

−0.2 0.4627 0.3834 0.3610 0.3519 0.3473 0.3446

0 0.5465 0.4263 0.3843 0.3652 0.3550 0.3490

0.2 0.6119 0.4663 0.4100 0.3818 0.3659 0.3561

0.4 0.6643 0.4993 0.4338 0.3988 0.3780 0.3647
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It is observed that all the closed loop poles lie in the
left half of −0.3 and the maximum σ of all 1024 mesh
points is σmax = −0.5991. The minimum damping ratio is
positive for all 1024 mesh points and ζmin = 0.3438 is
achieved with the proposed PID-PSS controller. Hence,
the proposed controller exhibits robust stability and

performance over the entire range of bounded operating
conditions.
The relative stability and damping ratio of the closed

loop system for some operating points over the range P
ϵ [0.2,1.2] and Q ϵ [− 0.4,0.4] with a step size of 0.2 p.u.
are listed in Table 1.
To further validate the robust performance of the pro-

posed controller for other uncertainties such as changes
in transmission line reactance due to line outage, ma-
chine inertia constant and field time constant, the rela-
tive stability σmax and minimum damping ratio ζmin are
calculated and are listed in Tables 2, 3 and 4.
Assuming the generator is connected to the infinite bus

by a double-line circuit with equivalent xe = 0.4Ω, the effect
of the transmission line outage can be investigated by con-
sidering xe= 0.8Ω and Table 2 shows the corresponding
relative stability and minimum damping ratio.
It can be seen that with the proposed robust PID-

PSS, σmax = −0.9677 and ζmin = 0.4150. Hence, the
relative stability and minimum damping ratio for all
the operating points considered are within the desired
values. Therefore, the closed loop response for trans-
mission line outage is satisfactory for P ϵ [0.2, 1.2]
and Q ϵ [− 0.4, 0.4].
With ±30% changes in field time constant, Table 3

shows that the proposed robust PID-PSS has

Table 2 Relative stability and minimum damping ratio for xe =
0.8Ω with P and Q in p.u

Q P = 0.2 P = 0.4 P = 0.6 P = 0.8 P = 1 P = 1.2

Relative Stability(σmax)

−0.4 −1.1226 − 1.1529 − 1.1026 − 1.0545 − 1.0095 − 0.9677

−0.2 − 1.1544 −1.2014 − 1.1926 −1.1665 − 1.1344 −1.1007

0 −1.3007 −1.2934 − 1.2883 −1.2727 − 1.2499 −1.2233

0.2 −1.6075 −1.4763 − 1.4277 −1.3995 − 1.3744 −1.3488

0.4 − 2.0210 −1.7552 − 1.6261 − 1.5623 −1.5208 − 1.4877

Minimum damping ratio (ζmin)

P = 0.2 P = 0.4 P = 0.6 P = 0.8 P = 1 P = 1.2

−0.4 0.4378 0.4330 0.4285 0.4241 0.4196 0.4153

−0.2 0.5121 0.4497 0.4327 0.4246 0.4193 0.4150

0 0.5773 0.4931 0.4534 0.4353 0.4251 0.4184

0.2 0.5234 0.5384 0.4801 0.4515 0.4352 0.4248

0.4 0.4986 0.5725 0.5063 0.4690 0.4470 0.4329

Table 3 Relative stability and minimum damping ratio for ±30% changes in field time constant Tdo
’

Q
p.u

%
Tdo

’
P in p.u

0.2 0.4 0.6 0.8 1 1.2

Relative Stability(σmax)

− 0.4 + 30 − 0.5076 −0.7046 − 1.0904 − 1.4206 − 1.4081 − 1.3942

−30 −0.7729 − 1.1345 − 1.1350 − 1.1292 − 1.1292 − 1.1121

− 0.2 + 30 − 1.4266 − 1.1834 − 1.4920 − 1.4981 − 1.4954 − 1.4882

−30 − 1.0820 − 1.1360 − 1.1569 − 1.1628 − 1.1620 − 1.1578

0 + 30 − 1.7710 − 1.5991 − 1.5876 − 1.5888 − 1.5878 − 1.5834

− 30 −1.1817 − 1.1782 − 1.1923 − 1.2009 − 1.2038 − 1.2030

0.2 + 30 − 2.5395 − 1.8636 − 1.7504 − 1.7163 − 1.7015 − 1.6916

− 30 − 1.3693 − 1.2740 − 1.2568 − 1.2549 − 1.2547 − 1.2535

0.4 + 30 − 3.6341 − 2.2863 − 1.9956 − 1.8943 − 1.8479 − 1.8217

− 30 − 1.6257 − 1.4180 − 1.3539 − 1.3303 − 1.3197 − 1.3134

Minimum damping ratio (ζmin)

− 0.4 + 30 0.4167 0.3952 0.3906 0.3888 0.3877 0.3869

− 30 0.3153 0.3003 0.2970 0.2956 0.2947 0.2939

−0.2 + 30 0.5246 0.4312 0.4050 0.3945 0.3892 0.3861

−30 0.3921 0.3272 0.3087 0.3012 0.2973 0.2950

0 + 30 0.6237 0.4797 0.4308 0.4086 0.3969 0.3901

−30 0.4619 0.3638 0.3290 0.3131 0.3046 0.2996

0.2 + 30 0.7055 0.5240 0.4587 0.4263 0.4081 0.3970

−30 0.5156 0.3986 0.3517 0.3281 0.3147 0.3065

0.4 + 30 0.6827 0.5587 0.4836 0.4438 0.4202 0.4052

−30 0.5159 0.4284 0.3734 0.3438 0.3261 0.3148
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satisfactory closed loop response for all the operating
states with σmax = −0.5076 and ζmin = 0.2939. From
Table 4, it is observed that with ±30% changes in
machine inertia constant, σmax = − 0.5956 and ζmin =
0.2873, indicating desired performance by the pro-
posed robust PID-PSS.
Hence, we can conclude that the proposed PID-PSS

exhibits robust stabilization and performance for the
uncertainties presented in the system, since the pro-
posed PID-PSS parameters are tuned for variations in
system coefficients rather than system variables.

5.3 Simulation results and discussion
To further test the efficiency of the proposed PID-PSS
comparing with the existing controllers in literature, the
k -constants, i.e., k1-k6 are calculated for light, nominal,
full and overload conditions. Using the MATLAB-
SIMULINK tool box, Fig. 2 is simulated for the above
specified operating conditions with TW = 5 and kp =
98.8226, ki = 30, kd = 57.1044. The uncertainty in the
system is provided by a small mechanical step
disturbance.

5.3.1 Full load operating point
Figure 11 shows the simulation results when the system
is operated at P = 1.0 p.u. and Q= -0.4 p.u., and is

subjected to a mechanical disturbance of 0.1 p.u. at 0.5
s. It can be observed that without a controller, the plant
is unstable to the given disturbance. With the proposed
controller, the system is stable and the oscillation in

Table 4 Relative stability and minimum damping ratio for ±30% changes in machine inertia constant (M)
Q
p.u.

%
M

P in p.u.

0.2 0.4 0.6 0.8 1 1.2

Relative Stability(σmax)

−0.4 + 30 − 0.6026 − 0.9114 −1.2797 − 1.2690 − 1.2551 − 1.2400

− 30 − 0.5956 −0.8983 − 1.2757 −1.2713 − 1.2647 −1.2571

− 0.2 + 30 − 1.2207 − 1.2870 − 1.3128 −1.3186 − 1.3151 −1.3069

− 30 −1.2629 − 1.3023 − 1.3234 −1.3305 − 1.3309 −1.3280

0 + 30 −1.3869 −1.3558 − 1.3678 −1.3758 − 1.3770 −1.3733

−30 −1.4846 −1.3943 − 1.3932 −1.3980 − 1.4001 −1.3994

0.2 + 30 −1.7087 −1.5090 − 1.4679 −1.4577 − 1.4529 −1.4479

− 30 −1.8812 − 1.5722 − 1.5084 −1.4905 − 1.4838 −1.4796

0.4 + 30 − 2.2016 −1.7473 − 1.6206 − 1.5733 −1.5509 − 1.5372

−30 − 2.4677 − 1.8335 −1.6755 − 1.6164 −1.5895 − 1.5748

Minimum damping ratio (ζmin)

−0.4 + 30 0.4230 0.4024 0.3980 0.3960 0.3946 0.3935

−30 0.3089 0.2932 0.2899 0.2886 0.2878 0.2873

−0.2 + 30 0.5275 0.4379 0.4126 0.4023 0.3970 0.3938

−30 0.3870 0.3202 0.3013 0.2937 0.2899 0.2876

0 + 30 0.6247 0.4869 0.4391 0.4173 0.4057 0.3988

−30 0.4554 0.3559 0.3208 0.3048 0.2963 0.2913

0.2 + 30 0.6329 0.5339 0.4689 0.4366 0.4183 0.4071

−30 0.5038 0.3882 0.3419 0.3185 0.3053 0.2972

0.4 + 30 0.6203 0.5748 0.4973 0.4566 0.4325 0.4172

−30 0.5333 0.4135 0.3609 0.3323 0.3151 0.3041

Fig. 11 Comparision of speed deviation response of the
proposed with existing methods to 0.1 p.u torque
disturbance at P = 1 p.u. and Q = -0.4p.u

A.S.V et al. Protection and Control of Modern Power Systems            (2020) 5:20 Page 10 of 16



speed deviation is less and reaches the steady state
within a shorter time than the existing methods.
Table 5 shows that the proposed controller leads to

better time domain specifications and has a better per-
formance than the existing methods. The terminal volt-
age deviation during disturbance shown in Fig. 12 is
within limits and the steady-state error is less than that
of the other methods. Hence, the proposed controller
exhibits robust performance even when the system is
operating at full load and leading power factor at which
the damping factor is poor.

5.3.2 Light load operating point
In this case the plant is operated at a light load condition
at leading power factor i.e., P = 0.2 p.u. and Q= -0.4 p.u..
At 0.5 s a 0.1 p.u. step mechanical disturbance is applied
to the plant. From Fig. 13 without a controller, the plant
is stable for uncertainty in the load but the settling time
is long and peak overshoot is high. With the PID-PSS in

[41] shown in Fig. 14, the settling time and terminal volt-
age deviations are also very large, whereas with the pro-
posed PID-PSS, the time domain specifications are within
acceptable limits. In general, the settling time should be
less than 10–15 s for satisfactory dynamic performance.
Table 6 shows that the proposed robust PID-PSS has bet-
ter overall performance than the other methods.

5.3.3 Nominal load operating point
The plant is operated at a lagging power factor and 10%
mechanical step disturbance is induced. Figure 15 shows
that the peak overshoot is low and the steady-state error
in terminal voltage deviation shown in Fig. 16 is almost
zero. Table 7 shows that the proposed robust PID-PSS
has superior overall performance than the other control-
lers in literature. Therefore it can be concluded that the
proposed controller gives the best performance at this
operating point compared to other available controllers
in the literature.

Table 5 Comparision of performance measures between the proposed and existing methods at P = 1 p.u. and Q = -0.4p.u

Time domain specifications/
Performance Indices

Kharitonov Poly
Root Locus [36]

Kharitonov Poly
PSO [37]

Image set
Lead-Lag [41]

Image set
PID-PSS [41]

Proposed
PID-PSS

Rise Time 0.0013 0.0044 3.4553e-4 0.0060 1.5920e-4

Settling Time 5.123 5.591 2.894 2.981 2.459

Peak value 8.4693e-4 8.5472e-4 9.4378e-4 9.3149e-4 4.4416e-4

Peak time 0.6300 0.6300 0.6400 0.6700 0.5800

ISE 1.7344e-7 1.6359e-7 1.5757e-7 2.4247e-7 0.4147e-7

IAE 5.2443e-4 4.5540e-4 3.1390e-4 4.7086e-4 2.2977e-4

ITSE 1.6253e-7 1.4751e-7 1.1311e-7 1.8707e-7 0.3529e-7

ITAE 8.8001e-4 6.9924e-4 3.2520e-4 5.4516e-4 2.7949e-4

Fig. 12 Comparision of terminal voltage deviation response
of the proposed with existing methods to 0.1 p.u. torque
disturbance at P = 1 p.u. and Q = -0.4 p.u

Fig. 13 Comparision of speed deviation response of the
proposed with existing methods to 0.1 p.u. Torque
disturbance at P = 0.2 p.u. and Q = -0.4 p.u
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5.3.4 Over load operating point
The machine is operated at P = 1.2 p.u. and Q= 0.2 p.u.
and is again exposed to a mechanical disturbance of 0.1
p.u.. From Fig. 17, it can be seen that without PSS the dis-
turbance pushes the machine from stable mode to un-
stable mode. With the addition of PSS in the feedback
loop the system regains its stability. With the proposed
controller, the peak overshoot of speed deviation is less
but the terminal voltage variation is higher when com-
pared to other controllers, as seen from Fig. 18. However,
the ΔVt is within acceptable limits. Table 8 shows that the
proposed robust PID-PSS has lesser time domain specifi-
cations and performance errors than the other notable
controllers in literature. Hence, it can be concluded that
the proposed PID-PSS gives robust performance over all
operating points compared to the existing controllers.

5.4 Case study II
The system considered is a real plant, i.e., Barka II power
station in Oman. It consists of three steam units each

rated at 200MVA and two gas units each rated at
175MVA. The PSS is designed for one of the gas units,
while the rest of the plant, i.e., the other 4 units and the
Oman grid are represented by a Thevenin’s equivalent
impedance and infinite bus. The data is taken from [48],
and three operating conditions, i.e., light, nominal and
heavy load covering the whole operating region, are
considered for design purposes. From these three
loading conditions, extreme values of the coefficients are
obtained as:

Fig. 14 Comparision of terminal voltage deviation response
of the proposed with existing methods to 0.1p.u. Torque
disturbance at P = 0.2p.u. and Q = -0.4p.u

Fig. 15 Comparision of speed deviation response of the
proposed with existing methods to 0.1 p.u. torque
disturbance at P = 0.8 p.u. and Q = 0.3 p.u

Table 6 Comparision of performance measures between the
proposed and existing methods at P = 0.2 p.u. and Q = -0.4p.u
Timedomain
specifications/
Performance Indices

Kharitonov
Poly Root
Locus [36]

Kharitonov
Poly PSO
[37]

Image set
Lead-Lag
[41]

Image set
PID-PSS
[41]

Proposed
PID-PSS

Rise Time 1.5416e-4 0.1295 2.4178e-4 2.4337 4.4031e-4

Settling Time 6.234 5.248 6.029 16.260 6.059

Peak value 9.2209e-4 9.1194e-4 0.0010 0.0010 4.8232e-4

Peak time 0.6400 0.6400 0.6600 0.7 0.5800

ISE 4.7748e-7 4.0880e-7 3.3331e-7 9.6953e-7 1.0867e-7

IAE 0.012 0.011 0.0010 0.0022 7.1382e-4

ITSE 6.4033e-7 5.5919e-7 4.3636e-7 1.7878e-6 1.7905e-7

ITAE 0.0022 0.0021 0.0026 0.0066 0.0021

Fig. 16 Comparision of terminal voltage deviation response
of the proposed with existing methods to 0.1 p.u. torque
disturbance at P = 0.8 p.u. and Q = 0.3 p.u
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a4 ¼ 1; 1½ �; a3 ¼ 20:22; 20; 22½ �
a2 ¼ 233:8; 425:3½ �; a1 ¼ 4247; 8108½ �
a0 ¼ 3900; 8056½ �; b ¼ 21:71; 30:188½ �

9=
; ð39Þ

The overall transfer function of the plant with PID –
PSS in the closed loop is given by:

T sð Þ ¼ − 21:71; 30:18½ �s
1; 1½ �s4 þ 20:22; 20:22½ �s3 þ 233:8þ 21:71kd; 425:3þ 30:18kd½ �s2
þ 4247þ 21:71kp; 8108þ 30:18kp
� �

sþ 3900þ 21:71ki; 8056þ 30:18ki½ �

ð40Þ
From (40) the characteristic equation of the closed

loop transfer function is given by the following interval
polynomial:

D s; að Þ ¼ 1; 1½ �s4 þ 20:22; 20:22½ �s3 þ ½233:8þ 21:71kd;
425:3þ 30:18kd�s2 þ 4247þ 21:71kp; 8108þ 30:18kp

� �
s

þ 3900þ 21:71ki; 8056þ 30:18ki½ �

9=
;

ð41Þ

Applying the new stability conditions given by
(18)–(22) to (41), the following inequality constraints are
obtained:
Constraint 1:

8056þ 30:18ki½ ��20:22
4247þ 21:71�kp
� �� 233:8þ 21:71�kd½ � − 0:4655 < 0 ð42Þ

Constraint 2:

8108þ 30:18kp
� ��1

233:8þ 21:71�kd½ ��20:22 − 0:4655 < 0 ð43Þ

Constraint 3:

− 233:8 − 21:71�kd < 0 ð44Þ
Constraint 4:

− 4247 − 21:71�kp < 0 ð45Þ

Table 7 Comparision of performance measures between the
proposed and existing methods at P = 0.8 p.u. and Q = 0.3 p.u
Time domain
specifications/
PerformanceIndices

Kharitonov
Poly Root
Locus [36]

Khartionov
Poly PSO
[37]

Image set
Lead-Lag
[41]

Image set
PID-PSS
[41]

Proposed
PID-PSS

Rise Time 8.1266e-4 9.7828e-4 7. 9823e-5 0.0024 1.1915e-4

Settling Time 2.954 3.204 2.232 2.194 1.989

Peak value 0.0009 0.0009 0.001 0.001 5.3542e-4

Peak time 0.6500 0.6400 0.6500 0.69 0.5900

ISE 7.6983e-7 7.0825e-7 6.0816e-7 0.1092e-7 0.69672e-7

IAE 9.0728e-4 8.3127e-4 5.7750e-4 8.3347e-4 2.7660e-4

ITSE 6.1336e-7 5.6275e-7 4.2605e-7 8.0200e-7 0.56847e-7

ITAE 0.0011 0.0010 5.1849e-4 7.7943e-4 3.0262e-4

Fig. 17 Comparison of speed deviation response of the
proposed with existing methods to 0.1 p.u. .torque
disturbance at P = 1.2 p.u. and Q = 0.2p.u

Fig. 18 Comparision of terminal voltage deviation response
of the proposed with existing methods to 0.1p.u. torque
disturbance at P = 1.2 p.u. and Q = 0.2p.u

Table 8 Comparision of performance measures between the
proposed and existing methods at P = 1.2 p.u. and Q = 0.2p.u.
P = 1.2p. uandQ = 0.2p. u
Time domain
specifications/
Performance Indices

Kharitonov
Poly Root
Locus [36]

Kharitonov
Poly PSO
[37]

Image set
Lead-Lag
[41]

Image set
PID-PSS
[41]

Proposed
PID-PSS

Rise Time 0.0024 2.7269e-5 8.5554e-5 0.0032 1.4115e-4

Settling Time 3.320 3.141 2.374 2.184 1.895

Peak value 8.6473e-4 8.5661e-4 9.4161e-4 9.3236e-4 4.7783e-4

Peak time 0.6300 0.6300 0.6500 0.6700 0.5800

ISE 1.5223e-7 1.4698e-7 1.5204e-7 2.0622e-7 0.4934e-7

IAE 4.0349e-4 3.7200e-4 2.8842e-4 3.6083e-4 2.3155e-4

ITSE 1.2249e-7 1.1866e-7 1.0651e-7 1.4880e-7 0.4002e-7

ITAE 5.1076e-4 4.5924e-4 2.5746e-4 3.3132e-4 2.4989e-4
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Constraint 5:

− 3900 − 21:71�ki < 0 ð46Þ
The controller parameters are tuned by minimizing

the objective function (23) subject to satisfying the above
inequalities (42)–(46) using FMINCON in MATLAB to
achieve desired damping and settling time at light, nom-
inal and heavy loading conditions. The kpo, kio and kdo
are determined using the procedure described for Case
study I. The obtained optimal PID-PSS controller values
are:

kp ¼ 50; ki ¼ 244:9695; and kd ¼ 36:2937 ð47Þ

The system is simulated in MATLAB-SIMULINK
using the Heffron-Philiphs model shown in Fig. 2 for
light, nominal and heavy loading conditions. The per-
formance of the proposed PID-PSS is evaluated by sub-
jecting the plant to a 0.1 p.u. mechanical step
disturbance for all the three cases. The speed deviation
responses of the plant are shown in Figs. 19, 20 and 21.
It is observed that even without PSS the system is stable
for a 10% mechanical step disturbance but it takes a long
time to reach steady state and the peak overshoot is
high. The dynamic stability of the plant is improved by
the addition of PSS. The settling time is around 4 s with
single lead PSS [52], 2.5 s with double lead PSS [52], and
1.3 s with the proposed PID-PSS for all the three operat-
ing conditions. Thus, the proposed PID-PSS well damps
out system oscillation for the given disturbance under
the different loading conditions. In addition, the peak

overshoot with single lead PSS is higher than those of
the proposed and double lead PSS controllers, while the
latter two are similar. It can also be noted that the pro-
posed PID-PSS produces less oscillation than the double
lead PSS controller, hence creating fewer shaft fatigue ef-
fects. Hence, it is concluded that the proposed PID-PSS
provides better dynamic performance for the

Fig. 19 Comparison of light load (P = 0.4 p.u. and Q = 0.35
p.u.) response of Barka-II Power station of the proposed with
existing methods to 0.1 p.u. torque disturbance

Fig. 20 Comparison of nominal load (P = 0.7 p.u. and Q =
0.525 p.u.) response of Barka-II Power station of the proposed
with existing methods to 0.1 p.u. torque disturbance

Fig. 21 Comparison of heavy load (P = 1 p.u. and Q = 0.875
p.u.) response of Barka-II Power station of the proposed with
existing methods to 0.1 p.u. torque disturbance
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uncertainties present in the system than the other con-
trollers [52] under all operating conditions.

6 Conclusion
A simple robust PID-PSS design methodology is pro-
posed to enhance the dynamic stability of an SMIB sys-
tem for a wide range of operating conditions. The
Heffron-Pilliphs model developed by DeMello and Con-
cordia is used for small signal stability analysis, whereas
the SMIB system is represented by a fourth order trans-
fer function in an interval system. The extreme values of
the coefficients are computed for a specified range of P
and Q, and the computationally simple stability condi-
tions with five inequality constraints are developed for
the SMIB interval system. The robust PID-PSS parame-
ters are tuned using FMINCON solver in MATLAB.
The performance of the proposed robust PID-PSS is
demonstrated with two case studies for different operat-
ing conditions. Simulation results show that the pro-
posed robust PID-PSS has superior performance and
provides better damping of low frequency oscillation
when subjected to a small load disturbance for a wide
range of operating conditions, when compared to the
available methods in the literature.
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