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This paper presents a fast hybrid fault location method for active distribution networks with distributed generation
(DG) and microgrids. The method uses the voltage and current data from the measurement points at the main
substation, and the connection points of DG and microgrids. The data is used in a single feedforward artificial
neural network (ANN) to estimate the distances to fault from all the measuring points. A k-nearest neighbors (KNN)
classifier then interprets the ANN outputs and estimates a single fault location. Simulation results validate the
accuracy of the fault location method under different fault conditions including fault types, fault points, and fault
resistances. The performance is also validated for non-synchronized measurements and measurement errors.
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1 Introduction

Following the occurrence of a short circuit fault in a dis-
tribution network, the restoration process may take from
tens of minutes to hours to complete. During fault man-
agement, fault location (FL) can serve as an effective tool
to narrow down the search area, thereby considerably re-
ducing the inspection and service restoration time.
There are a wide variety of FL. methods proposed in the
literature [1]. These can be classified into impedance-
based, travelling wave-based, sparse measurements-
based, artificial intelligence-based, and hybrid methods.
Although many of the proposed methods provide satis-
factory results, artificial intelligence techniques such as
the artificial neural network (ANN) and support vector
machine (SVM) have gained increased attention because
of their capability of solving nonlinear problems and
very short execution time. If these methods provide the
required accuracy, they can be applied in modern distri-
bution networks with advanced communication, meas-
urement and switching infrastructure for fast fault
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location and service restoration to reduce the duration
of a power outage [2].

Reference [3] employs an SVM to identify the fault
type and a feedforward ANN is then applied to estimate
the line reactance to the fault for each fault type using
the three-phase steady-state voltage and current. In [4],
fault voltage waveforms are processed using a wavelet
transform to extract wavelet coefficients to feed to a
feedforward ANN to estimate the fault distance. In [5], a
similar method employing a three-layer feedforward
ANN and a fuzzy logic system is used to classify the
fault type and estimate its distance.

In [6], high and low frequency components of voltage
and current transients are extracted using a wavelet
transform, and the components are fed into a fuzzy
ANN to locate the single-phase to ground faults. In [7],
the current entropy and energy of wavelet detail coeffi-
cients are employed as input features of an ANN for
faulted section identification and fault location. The
method in [8] uses a fuzzy ANN to map the information
extracted from the fault voltage to the location of single-
phase to ground faults. In [9], frequency components of
voltage and current signals are used as inputs to an
ANN classifier to locate faults in a small-scale distribu-
tion feeder. In [10], the current signals are analyzed to
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extract effective features to feed to an adaptive
neuro-fuzzy inference system (ANFIS) to estimate
the fault zone. The method proposed in [11] uses
neural networks for fault location in distribution
networks with distributed generation (DG). For each
type of fault, a separate multi-layer perceptron ANN
is trained to estimate the fault distance from the
main substation and all DGs. In [12, 13] the authors
propose data mining methods for the protection of
microgrids. These methods are effective for online
identification and isolation of a faulted line section,
but they cannot locate the fault. Similar methods are
proposed in [14, 15] to locate the fault, but they
require extensive measurement.

Table 1 compares the aforementioned ANN-based
fault location methods. Electrical power distribution
networks mostly have tree branched structures, and
therefore, the methods proposed in [3-5, 8, 9], which
estimate the distance to the fault, may result in mis-
identification of multiple candidate locations having
the same distance from the main substation. In [11],
the authors propose a method that estimates the dis-
tance to the fault from all DGs and main substation
to overcome the multiple solution problem. However,
considering the error in the estimated distance, it is
difficult to correctly interpret the results to find the
fault location. The methods in [4-9] use the infor-
mation of high frequency transients and hence
require measurements with high sampling rates. Such
equipment is costly and is not available in most dis-
tribution systems. In addition, the methods proposed
in [4, 6, 8] are designed only for earth faults and
most of the discussed FL methods are designed for
conventional radial networks [3, 4, 7—10] and are not
applicable to active distribution networks.

In order to overcome the limitations discussed above
and listed in Table 1, this paper presents a new hybrid
(ANN and KNN) FL method for active distribution
grids. It is assumed that meters are installed at DG
terminals, the microgrid point of connections and the
main substation to measure the three-phase voltage and
current (synchronized or non-synchronized). These
measurements are used as inputs to a single feedforward
ANN to estimate the distance to the fault from all meas-
urement points. At the next stage of the proposed
method, a k-nearest neighbor classifier is employed to
interpret the ANN outputs and estimate the faulted line
section and fault location. As shown in Table 1, com-
pared to existing similar methods, the proposed method
solves the multiple estimation problem in DG penetrated
networks for all types of faults.

The rest of the paper is organized as follows: Section 2
presents the details of the proposed method. The simu-
lation results under ideal and non-ideal conditions, with
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or without synchronised measurements, are presented in
Section 3. Finally, Section 4 concludes the paper and
highlights the contributions of the study.

2 Proposed method

This paper presents a fast hybrid FL method that uses
measurements as inputs to a feedforward ANN to esti-
mate distances to a fault from all measuring points.
Then, a KNN classifier interprets the ANN outputs and
estimates the fault location.

Multi-layered feedforward neural networks, also known as
multi-layered perceptron (MLP) have one input layer, one
output layer and one or more hidden layers. As shown in
Fig. 1, the number of neurons in the input and output layers
depends on the number of selected inputs and the number
of outputs, while the number of neurons in the hidden
layers is usually determined by trial and error depending on
the complexity of the problem. The neurons of each two
concessive layers are interconnected by weighted communi-
cation links. The weights represent information being used
to solve the problem and are determined by a training algo-
rithm. In this work, the well-known Levenberg-Marquardt
(LM) training algorithm is employed.

A KNN classifier is a simple algorithm that classifies
new cases based on their similarity to previous cases
using a measure (e.g., distance). The new case will be
assigned to the most common class among its k nearest
neighbors. The appropriate value of k can be chosen
using cross-validation to test several values of k in order
to determine which one works best.

2.1 The method architecture

Figure 2 shows the architecture of the proposed hybrid
method. First, the fault voltage and current signals of all
sources are collected and processed by a full cycle
discrete Fourier transform (DFT). The magnitudes and
phase angles of all the three-phase voltages and currents
are then extracted and the three-phase apparent imped-
ances of all sources calculated. The three features are
passed to the ANN, which outputs the distances to the
fault from all sources. The distances are then fed into
the KNN classifier to interpret the ANN outputs and
identify a correct class, which has the information of the
faulted line-section, fault location and distances to the
fault from all sources.

2.2 Selection of the input and output variables

Selection of input variables influences the range of ap-
plicability and its success in estimating the fault location.
Many of the previously proposed methods, such as those
in [4-9], are based on the information extracted from
high frequency fault transients using high sampling
rates, which are costly and not available in most distri-
bution systems. In this paper, the fundamental frequency
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component of three-phase voltage and current from all
sources (ie. main substation, DGs and microgrids) are
the only required measurements.

These measurements can be retrieved from the avail-
able smart meters, digital relays, or digital fault re-
corders, as the accessibility of such measurements at
source terminals is a primary requirement of DG con-
nection. A communication infrastructure such as the
one described in [16] can collect the required
measurements.

For measurement scenarios, two cases are considered.
In the first case, it is assumed that the measurements are
synchronised. Therefore, for n sources, magnitudes and
phase angles of three-phase voltage, current and appar-
ent impedances of all sources are selected as ANN input
features (i.e. 2 x 3 x 3 x  inputs). In the second case, the
measurements are not synchronized, and therefore, the
magnitudes of three-phase voltage, current and apparent
impedances of all sources are employed as ANN input
features (i.e. 3 x 3 x n inputs). The apparent impedance
of each source is calculated as:

Zi=— (1)

where V; and I; are the voltage and current of the i
source, respectively.

Table 1 Comparison of the ANN-based fault location methods
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The proposed method employs an ANN to estimate
the fault distance. Since the ANN-based fault locators
mostly select the distance to fault from the main sub-
station as the output [3-5, 8, 9], they may result in mis-
identification of multiple locations having the same
distance from the main substation. In the proposed
method, the ANN estimates distances to fault from all
sources (i.e. 7 outputs) to overcome the multiple solu-
tion problem. Nevertheless, the ANN outputs are not ac-
curate enough and it is difficult to match the obtained
distance to find a specific fault location.

For example, considering the fault in the network of
Fig. 3, if the ANN underestimates the distance to fault
from the first source (D;), there are three different
points with the same distance, as possible locations.

If the ANN overestimates the distance to the fault
from the second source (D), there are three other dif-
ferent points with the same distance, as other possible
locations. In ideal conditions, one of the points with the
estimated distance D;, matches one of the points with
the estimated distance D, exactly on the fault location.
However, in real-world conditions, as shown in Fig. 3,
there will be estimation errors and the estimated dis-
tance does not match. Consequently, this will lead to
confusion.

Therefore, at the final stage of the proposed method,
the use of a KNN classifier is proposed to interpret the

Method Type Inputs Outputs Considered Considering the
fault types effect of DG

Thukaram et al. [3] Feedforward ANN  Three-phase steady-state Line reactance to the fault from All types -
voltage and current the main substation

Pourahmadi-Nakhli Feedforward ANN  Energy content of voltage Fault distance from the main Single-line to ground -

and Safavi [4] transients around the substation
characteristic frequencies

Rafinia and Moshtagh [5] Feedforward ANN  Information extracted using Fault distance from the main All types v
DWT and analysis of substation
the recorded transients

Chen et al. [6] Feedforward ANN  Information extracted from Distance to the fault from all Earth faults v
voltage signals recorded at voltage sensors and the faulted
different locations line- section

Dashtdar et al. [7] Feedforward ANN  High frequency components Line impedance to the main All types -
of current signals substation, faulted line-section

Chunju et al. [8] WENN High frequency and low- Fault distance from the main Single-line to ground -
frequency components of substation
voltage and current transients

Aslan and Yagan [9] Feedforward ANN  High frequency and low- Fault distance from the main All types -
frequency components of substation
voltage and current transients

Mora et al. [10] ANFIS Patterns obtained from Faulted zone All types -
measured substation current

Javadian et al. [11] Feedforward ANN  Ratio of injected fault currents  Distance to the fault from all DGs  All types v
of DGs to substation current and the main

substation
The proposed method Feedforward ANN  Three-phase steady-state Fault location, faulted line-section Al types v

voltages and currents of
substation and DGs

and distance to the fault from all
DGs and the main substation
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ANN output to find the fault location and the faulted
line-section. In the example of Fig. 3, the KNN classifier
receives the estimated distances to the fault from all
sources and selects the nearest class with the most simi-
lar distances. The KNN outputs are the fault location,
faulted line-section, and distances to the fault from all
sources in the selected class.

2.3 Data generation

All the ANN-based methods have an offline training
phase using the already available data (real fault cases)
or generated data (simulated cases).

In this work, for generating training and/or testing
data, active and reactive power of all network loads are
varied randomly within specified ranges of their corre-
sponding base values, according to the following
relations:

Pi(k) = P{(1+ du(k)) )
Qi(k) = Qf(1 + 6ri(k))

where P;(k) and Q(k) are the respective active and react-
ive power of the i load for the kK training pattern,
whereas P;” and Q;” denote active and reactive power of
the base case load, respectively. §;; is a randomly gener-
ated number from a normal distribution with zero mean
and standard deviations of 20%.

For each fault type, faults are simulated at every 200 m
of all line-sections, with four different fault resistances
(ie. 1Q, 5Q, 200, 50Q). As shown in Fig. 4, under
random load data, for each of the training or testing
data, the considered fault type, fault resistance and fault
location are fed to the simulated system.
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Hidden layers
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Output layer
neurons

<2/ il

7

N @A
\ y / [ = VAVIIA,
YOCA R
WS @ENVIA

AT

'\
/4"# NS J

‘V \Y/ \V"‘V,)Y.'

SR N
SR

WS

SR o ST

SN\ @S
/tqgél;é*‘\(.V,’lz,'{}%‘;“‘V 4”0’&
LN E® )

Fig. 1 A typical multi-layered perceptron (MLP) neural
network with two hidden layers
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For each simulated case, the voltage and current wave-
forms at all source terminals are recorded and the full-
cycle discrete Fourier transform is used to calculate the
fundamental phasors. Having the voltage and current
phasors, the apparent impedance is calculated using (1)
and these features are stored as inputs of each training
or testing data pattern. The target output is calculated as
the distance to the considered fault location from all
sources. This procedure is repeated to generate sufficient
numbers of training and/or testing patterns for building
the proposed neural network model.

3 Results and discussion
A simplified three-phase symmetrical model of the IEEE
34-node radial test feeder [17] is used to demonstrate
the performance of the proposed FL method. As shown
in Fig. 5, the test feeder is modified by adding two
microgrids and one DG unit at nodes 822, 838 and 848,
respectively. The lengths of the line-sections are also il-
lustrated in Fig. 5. The microgrids are modelled accord-
ing to [18] and the DG units are modelled as a source
behind an impedance with unity power factor represent-
ing inverter-based generation. The lines are modelled by
three-phase pi-equivalents and loads to be of a constant
impedance type, whereas the DG units serve 50% of the
total system load.

The considered fault scenarios for different fault types,
fault resistances and fault locations are simulated on the

Measured voltage and current of all
Input
sources

( Discrete Fourier transform (DFT) ]

Fundemental phasors of all

sources voltage and current
Calculation of three-phase

impedance of all sources

v v

Feed-forward ANN

-/

ANN lDlANN lDZANN l D,ANN
output

[ KNN Classifier )
N Faaed  Fault o)
output |line-section location

D;ANN : Distance to fault from ith source estimated by ANN
D;iNN : Distance to fault from ith source estimated by KNN

Fig. 2 Architecture of the proposed method
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A7 Fault

O Points with estimated distance
D1 from the 1st source

A Points with estimated distance
D from the 2nd source

<> The selected class

Fig. 3 The difficulty of interpretation of ANN outputs in
finding a specific fault location

test system to generate data. Using the procedure de-
scribed in Section 2.3, 1056 cases are generated for each
fault type, simulated at different locations (i.e. every 200
m of all line-sections), with four different fault resis-
tances (ie. 1Q, 5Q, 20Q, 50 Q). From the generated
cases, 90% are employed as training data and the
remaining 10% are employed as testing data. The input
features for all the different fault types are normalized
within the range of [- 1, 1], and are fed to a single ANN

Random Fault
load data impedance Fault type Fault location

Simulated system

Three-phase
current waveforms
of all sources

Three-phase
voltage waveforms
of all sources

Distance
calculation

A4

( Discrete Fourier transform (DFT) J

Calculation of three-phase
impedance of all sources

[ Three-phase Three-phase Three-phase Fault ]
voltage of all current of all impedance of location Dy, Dy, .., Dn

k sources sources all sources )
U ~ AN )

Training and
testing patterns

Inputs Outputs

Di : Distance to fault from ith source

Fig. 4 Generation of training and testing data
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to estimate the FL. Table 2 lists the details of the gener-
ated data.

In order to test the generalization capability of the
proposed hybrid method, the root mean-squared error
(RMSE) and the maximum absolute error (MAE) be-
tween the actual FL and the estimated FL are calculated.
These indices can be defined as:

RMSE = \/% Z:jl(error(p))z 3)
MAE = max(error)

where p is the pattern number, NP is the total number
of patterns, and error is the fault distance estimation
error in meters calculated as:

error(p) = |actual(FL(p)) — estimated(FL(p))| (4)

The structure of the neural network is determined by
trial and error. It has one input layer, two hidden layers
consisting of 15 and 10 neurons each, and one output
layer. The input features consist of the magnitudes and
phase angles of three-phase voltage, current and appar-
ent impedances of all sources, while the outputs are the
distances to the fault from all sources. A hyperbolic tan-
gent transfer function and linear transfer function are
used for the hidden layers and the output layer neurons,
respectively. The proposed MLP ANN is trained using
the Levenberg—Marquardt method. On a personal com-
puter with 2-GHz Intel Core 2 Duo processor and 2 GB
of RAM, it takes around 265s with 21 epochs to train
the network. Once the MLP ANN model is trained, the
testing data is employed to evaluate the model

Table 2 Training/testing data details

Simulation parameters Details Count
Fault type Phase to ground, phase to 4
phase, phase to phase to
ground, three-phase to ground
Fault resistance (Q) 10,50,200,500 4
Fault location Each 200 m of all line-sections 264
Total conditions 3800 cases for training and the 4224

424 cases for testing
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Fig. 6 ANN outputs error of estimated fault distances from
all sources, for 20 randomly selected testing data

performance. For KNN, after several trials with different
values of k and different distance metrics, k is selected
to be equal to 1 and the Euclidean distance metric is se-
lected. When k=1, a new case is simply assigned to the
class of the single nearest neighbor.

3.1 Tests with synchronized measurements

In this section, it is considered that the measurements
are synchronised, and the voltage and current signals are
provided with magnitudes and phase angles. In this case,
the input feature vectors have the dimensions of
3800x72 for the training set and 424x72 for the testing
set, respectively. Figure 6 shows the ANN output error
between the estimated and the corresponding actual
fault distances from all sources, for 20 randomly selected
testing data. The accuracy of the results is acceptable,
though as discussed in Section 2.2, it is difficult to inter-
pret the output distances of the ANN to find the actual
fault location. Therefore, the ANN outputs are passed to
a KNN classifier to interpret the results to find the
faulted line-section and the fault location. Figure 7
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Fig. 7 KNN outputs error of estimated fault distances from

all sources, for 20 randomly selected testing data

Fig. 8 Output MAE values for different fault types for 424
test cases. a for ANN outputs b for KNN outputs

shows the errors of the KNN outputs for the same fault
scenarios. It can be seen that the use of the KNN as an
interpreter not only helps find the faulted line-section
and the fault location, but also refines the accuracy of
the results and for most of the selected data, the output
error is zero.

3.1.1 Results for different fault types

Figures 8 and 9 show the MAE and RMSE of ANN
and KNN outputs for all testing data. The results in-
dicate that the proposed single MLP ANN is able to
estimate the fault distance of all different fault types
with acceptable accuracy. However, in some cases, the
obtained MAE is considerably large. The KNN refines
the ANN results and for all testing data, the max-
imum output error is less than 400m. The small
RMSE values of less than 100 m for all the considered
test scenarios shown in Fig. 9b, clearly indicate the
good performance and acceptable generalization ac-
curacy of the proposed method for different fault

300 @ ‘ ‘

[l Distance from the main substation
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100 H
i | DA |
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LG 3ph LLG
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Fig. 9 Output RMSE values for different fault types for 424
test cases. a for ANN outputs b for KNN outputs
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Fig. 10 Output errors of the KNN for different fault
resistances for 424 test cases. a RMSE b MAE

types. Also, the proposed method estimates the FL al-
most instantaneously.

3.1.2 Results for different fault resistances

In addition to fault type, fault resistance is another factor
and can change the voltage and current of the sources dur-
ing the fault, and hence complicates the fault location prob-
lem. Figure 10 shows the RMSE and MAE values of the
KNN outputs for different fault resistances. It can be seen
that the RMSE increases along with the increase of the fault
resistance. However, the proposed method has an RMSE
value of less than 100 m and an MAE value of less than
400 m for all the testing cases. In 99.3% of the considered
test scenarios, the faulted line-section is correctly identified.
In the other 0.7%, the distance between the estimated and
the actual fault locations is less than 400 m.

3.2 Tests with non-synchronized measurements
In the previous sections, it was assumed that the mea-
surements are fully synchronised and that they are able
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Fig. 11 Output errors of the KNN for different fault types
using non-synchronized measurements for 424 test cases. a
MAE b RMSE
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to provide the magnitudes and phase angles of three-
phase voltage and current of all sources. However, even
in some of the recent smart meter deployments, syn-
chronized measurements are not available [16]. In this
section, we consider the situation where only the mea-
sured magnitudes of three-phase voltage and current are
available. For this condition, the input feature vectors
have the dimensions of 3800x36 for the training set and
424x36 for the testing set. The structure of the neural
network is similar to the previous one, but with 36 in-
puts in the input layer (i.e. magnitudes of three-phase
voltage, current and apparent impedances of all sources).
In this case, it took about 385 s with 43 epochs to train
the network.

Figures 11 and 12 show the MAE and RMSE of the
KNN outputs for different fault types and fault resis-
tances. It can be seen that even with non-synchronised
measurements, the proposed method is able to estimate
the fault distance of all different fault types and fault re-
sistances with a single MLP ANN. Compared to the case
with synchronised data, the estimation errors are in-
creased, but in 98.84% of the considered test scenarios
the faulted line-section is correctly identified.

3.3 Tests with measurement errors

Measurements may be influenced by errors due to noise,
meter inaccuracy, etc. In order to test the influence of
measurement errors on the performance of the proposed
method, the magnitudes of measured voltage and
current are varied randomly within specified ranges:

Vmi = V?\/Ii(l + 6mi) (5)
Iy = Ifm(l + Omi)

where V%5 and I?); are the actual values of voltage
and current of the i”* source, respectively, whereas
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Va: and Iyg; are the erroneous inputs of the fault lo-
cator. J,,; is a randomly generated number from a
normal distribution with zero mean and standard de-
viations of ¢,,;.

Measurements can be synchronised using the global
positioning system (GPS) or a computer network.
Network synchronization can provide an accuracy of
4us (0.08 degree in 60Hz) [19], while GPS
synchronization can achieve a theoretical accuracy of
1us (0.02 degree in 60Hz) [20]. If the phase angles
are employed as the feature to the ANN, the effect of
such measurement synchronization errors may also
affect the results.

Four cases are considered to assess the accuracy of the
proposed method under measurement errors:

Case 1) Random variation of the magnitudes of the
measured voltage and current within 1%;

Case 2) Random variation of the magnitudes of the
measured voltage and current within 2%;

Case 3) Random variation of the phase angles of the
measured voltage and current within 0.5 degree;

Case 4) Random variation of the magnitudes and phase
angles of the measured voltage and current within 2%
and 0.5 degree, respectively.

The test results for all cases are compared against the
ideal condition without measurement errors, as sum-
marised in Table. 3. When measurements are synchro-
nised, the proposed method can well handle the
measurement errors and in the worst case (Case 4),
more than 96.99% of the faulted line-sections are cor-
rectly identified. When non-synchronized measurements
are employed, random variation of measured magnitudes
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has a more considerable impact on the estimated dis-
tance, though synchronization errors do not affect the
fault locator performance. Comparing Case 3 with syn-
chronized measurements and the ideal condition with
non-synchronised measurements reveals that even
poorly synchronized measurements can help to provide
more accurate results. Overall, the proposed method
shows a high generalization potential, which helps to
correctly identify the faulted line section in the presence
of measurement errors.

4 Conclusions

As a practical function in distribution system automation,
accurate fault location can lead to fast service restoration
following a fault. However, the presence of DGs and micro-
grids in active distribution grids makes fault location a chal-
lenging problem. In this paper, the use of a single
feedforward ANN in combination with a KNN classifier (a
hybrid method) is proposed to estimate the fault location.
The simulation results show that the method provides
accurate results for different fault types, fault locations
and fault resistances, with or without measurement
synchronization. Compared to previously proposed
methods, the main contributions are as follows:

1. The methods in [3-5, 8, 9] which estimate the
distance to fault may result in misidentification of
multiple locations with the same distance, whereas
the proposed ANN estimates distances to the fault
from all the sources and the KNN classifier
interprets the ANN outputs to provide a single fault
location candidate;

2. Many of the previously proposed methods, such as
[4—9], require measurements with high sampling

Table 3 RMSE and MAE values and the Percentage of the correctly identified line-sections for all test scenarios

Performance RMSE (m) MAE (m) Percentage
measures of the
Outputs D1’ D22 D33 D4* D1 D2 D3 D4 fgg{,et,‘ft,'! #
line-sections
Cases With synchronised measurements
Ideal 77 77 77 77 400 400 400 400 99.31%
Case 1 1M 111 102 104 1000 400 400 600 98.84%
Case 2 163 109 108 109 2000 400 400 400 98.38%
Case 3 81 81 79 81 400 400 400 400 99.31%
Case 4 174 178 159 178 1800 1800 1800 1800 96.99%
With non-synchronised measurements
Ideal 15 115 13 115 1800 1800 1800 1800 98.84%
Case 1 178 178 166 166 2200 2200 2200 2200 98.61%
Case 2 222 222 253 253 2200 2200 2600 2600 97.91%
Case 3 115 115 13 115 1800 1800 1800 1800 98.84%
Case 4 347 334 291 292 4000 4000 3600 3600 95.6%

1. Distance from the main substation, 2. Distance from microgrid 1, 3. Distance from microgrid 2, 4. Distance from DG
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rates. In contrast, the proposed method uses lower
sampling rates;

3. The proposed method employs a single ANN for all
different fault types and thus does not require the fault
type identification process, which is a source of error;

4. Distribution level meters are prone to errors caused
by meter inaccuracy, noise etc., while their effect on
fault location has not been reported in previous
artificial intelligence-based distribution FL methods.
The simulation results show that the proposed
hybrid method provides acceptable results even
with less accurate measurements;

5. In distribution systems, even with smart meter
installation, the available load data is inaccurate
because of their low reporting rate. In this paper,
in contrast to previous work, the load data
uncertainty is considered with 20% random error
in the training phase and thus the ANN can
provide acceptable results despite such
inaccuracy.

Nevertheless, the main limitation of all learning-based
approaches is the need for retraining following changes
in distribution network topology or DG connection sta-
tus. Moreover, while the proposed method is designed
to provide acceptable results with 20% load variation, it
may not provide satisfactory results under larger load
variations. These limitations can be to some extent over-
come by training an ANN for each planned topology,
DG status and load level.
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