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Abstract

Wind power forecasting is of great significance to the safety, reliability and stability of power grid. In this study, the
GARCH type models are employed to explore the asymmetric features of wind power time series and improved
forecasting precision. Benchmark Symmetric Curve (BSC) and Asymmetric Curve Index (ACI) are proposed as new
asymmetric volatility analytical tool, and several generalized applications are presented. In the case study, the utility
of the GARCH-type models in depicting time-varying volatility of wind power time series is demonstrated with the
asymmetry effect, verified by the asymmetric parameter estimation. With benefit of the enhanced News Impact
Curve (NIC) analysis, the responses in volatility to the magnitude and the sign of shocks are emphasized. The results
are all confirmed to be consistent despite varied model specifications. The case study verifies that the models
considering the asymmetric effect of volatility benefit the wind power forecasting performance.

Keywords: GARCH, Asymmetric GARCH model, News impact curve (NIC), Benchmark symmetric curve (BSC),
Asymmetric curve index (ACI), Wind power forecasting

1 Introduction
On account of the lack of fossil resources and environ-
ment protection demand, wind power is becoming one
of the most rapidly growing renewable energy sources,
and regarded as an appealing alternative to conventional
power generated from fossil fuel, which plays a very
important role in national energy policies all around the
world. Because of its advantages of clean, low carbon
and renewable energy, wind power has provided strong
support for energy saving, emission reduction and envi-
ronmental protection in various countries [1, 2]. Accord-
ing to the data released in 2017, it has been stated that
the global installed wind power capacity has been 539
GW by the end of 2017 and a new record will be set in
the future. Particularly, China, as the driver of global
market growth for most of the last decade, increased its
capacity by 19.7GW in 2017. The wind power generation
reached 305.7 TWh in 2017 [3]. However, the amount
of power generation in wind farms usually show wide

fluctuations, therefore, it is difficult to forecast precisely
and establish an accurate dispatch plan.
Various approaches have been applied in the forecasting

of wind power [4–14]. A review of state-of-the-art ap-
proaches to wind speed forecasting has been published in
[4]. Models used for wind speed forecasting can be usually
categorized as physics-based models [5], statistical models,
and spatial models [6], which includes ARIMA [7],
Generalized Autoregressive Conditional Heteroskedasti-
city (GARCH) [8], Kalman filters [9] and more recent
machine learning technologies such as neural networks
[10, 11] and machine learning and deep learning methods
[12, 13], are widely used in recent literature papers. More-
over, some ensemble approaches witness the improved
the forecasting accuracy than the single methods [14].
The GARCH [8], usually has a better performance be-

cause traditional statistical methods like ARMA are built
on linear assumptions and the nonlinear patterns hidden
in the wind speed time series is hard to be captured.
However, the research on the characteristics analysis of
wind power time series is far from substantial. The
GARCH model assumes that the response of volatility to
a shock is a function of the shock strength only, without
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any correlation with the sign of the shock. In contrast,
empirical evidence indicates that positive and negative
shocks of equal strength may lead to different responses
to the volatility in some practical time series. For ex-
ample, due to the structure of a wind turbine, the in-
fluences of wind increasing and wind weakening is
different. The standard GARCH model cannot depict
this characteristic.
This paper focuses on the asymmetric characteristics

in the volatility of wind power time series, which is very
different from the related literature. The asymmetric
GARCH models are employed to capture the asymmet-
ric characteristics of volatility. Furthermore, the forecast-
ing ability of GARCH type models is verified according
to 3 statistical criteria.
Special attention is paid to the impact of news on the

volatility of wind power time series with the News Im-
pact Curve (NIC), which is presented in reference [15].
NIC is regarded as an efficient analytical tool to measure
the extent of new information being incorporated into
volatility estimates in many research domains. However,
the classical NIC has some limitations in the analysis on
the wind power time series with complicated volatility
characteristics. Further modification and complementar-
ities to refine the classical NIC are necessary. In this
paper, two novel notions, including a Benchmark Sym-
metric Curve (BSC) and Asymmetric Curve Index (ACI),
are proposed to provide an enhanced NIC analysis. Spe-
cifically, BSC is proposed to give a modest benchmark to
the asymmetric NIC, and ACI is presented to quantita-
tively measure the asymmetry of NIC.
The paper is organized as follows. First, Section II pre-

sents a survey of asymmetric GARCH type models.
Section III illustrates the extended notion of the NIC.
Section IV demonstrates the results of a case study.
With the refined NIC with a BSC and ACI, the re-
sponses in conditional variance of GARCH-type models
are analyzed. Furthermore, the out-of-sample forecasting
of GARCH type models is illustrated. At last, discussions
are concluded in Section V.

2 Asymmetric GARCH models
2.1 GARCH-M model
GARCH model, an extended version of ARCH model
[16], offers a general framework to model the heterosce-
dastic characteristic in time series [17].
The original GARCH (p, q) model is formulated by (1)

and (2) as below:
Conditional Mean:

yt ¼ E yt jΩt−1ð Þ þ εt ð1Þ

Conditional Variance:

ht ¼ α0 þ
Xq
i¼1

αiε2t−i þ
Xp
j¼1

β jht− j ð2Þ

where, εt ¼
ffiffiffiffiffi
ht

p
νt is the residuals; vt is the innovation; vt

~ I. I. D.,which follows E(νt) = 0, Eðν2t Þ ¼ 1. E(yt|Ωt − 1) is
the expectation taking into account the information set,
Ωt − 1,dated t-1 and earlier. Non-negative integers, p and
q, are the order of the variance equation, and α0 > 0, αi ≥ 0,
(i = 1, 2,⋯q); βj ≥ 0, (j = 1, 2…p), respectively.
Moreover, considering the correlation of the volatility

and the average value of wind power, which is called
GARCH in mean effect [8], introducing a GARCH-M
model to depict the wind power time series is a more
appropriate choice.
A basic GARCH-M model is formulated by (3) and

(2),

yt ¼ μþ g htð Þ−E g htð Þð Þ þ εt ð3Þ
where, ht is defined as a GARCH process, given by (2),
and E(g(ht)) is the expectation of g(ht).
The volatility compensation term g(ht) is a function

with positive range which denotes the impact magnitude
of volatility on the conditional mean equation. Practi-
cally, there are three popular hypothesises of g(ht):

g htð Þ ¼ δht ð4Þ

g htð Þ ¼ δh
1
�
2

t ð5Þ
g htð Þ ¼ δ loght ð6Þ

where, δ is the volatility compensation parameter that
can describe the direct influence of the volatility term on
the conditional mean of wind power time series.

2.2 Asymmetric GARCH type models
To accommodate these asymmetric characteristics of the
volatility, various extensions of asymmetric GARCH type
models are developed. These models include
GJRGARCH [17], APARCH [18], and EGARCH [19],
etc.
The above three models are employed in this study

and introduced as follows. Note that each conditional
mean equation of these models is defined as (3) with the
volatility compensation term shown in (4), (5) or (6).

1) GJR GARCH

The conditional variance equation of GJR GARCH
model is specified as

ht ¼ α0 þ
Xp
j¼1

β jht− j þ
Xq
i¼1

αiε
2
t−i þ γε2t−1dt−1 ð7Þ

where γ denotes the asymmetric parameter; dt − 1
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denotes a dummy variable when εt − 1 < 0, dt − 1 =1 and
when εt − 1 ≥ 0, dt − 1 =0.

2) APARCH

An asymmetric power ARCH (APARCH) model speci-
fies ht as

h
δ
.
2

t ¼ α0 þ
Xp
j¼1

β jh
δ
.
2

t− j þ
Xq
i¼1

αi jεt−ij−γεt−ið Þδ ð8Þ

where γ is the asymmetric parameter and δ is the power
term parameter.
It is probable to fit lots of GARCH type models within

the APARCH model by assigning certain values to α, β,
γ and δ.
Especially, APARCH will be reduced to a GARCH

model, if α, β is free, d = 2 and γ = 0.

3) EGARCH

EGARCH is another popular model of asymmetric
GARCH type. Conditional variance equation of an
EGARCH model is defined as follows

lnht ¼ α0 þ
Xp
j¼1

β j lnht− j þ
Xq
i¼1

αij εt−iffiffiffiffiffiffiffi
ht−i

p j þ ϕi
εt−iffiffiffiffiffiffiffi
ht−i

p
� �

ð9Þ
The asymmetric factor ϕi denotes the asymmetric ef-

fect to different shocks. The positive shocks bear stron-
ger marked impact than the negative shocks if ϕi > 0,
while the positive shocks contribute less volatility than
negative shocks if ϕi < 0.

2.3 Improved models considering non-Gaussian
distribution
In standard GARCH type models, the distribution of
innovation is generally assumed to be the normal distri-
bution. However, for many time series, this sort of
assumption does not suit the excess of kurtosis. There
exist lots of reports about the empirical conditional dis-
tribution with heavy tails [20, 21].
In order to depict leptokurtosis more precisely, t-dis-

tribution and Generalized Error Distribution (GED) are
selected as heavy tail alternative distributions.
The density of t-distribution is usually defined as:

f x; kð Þ ¼
Γ

k þ 1
2

� �

kπð Þ12Γ k
2

� � 1þ x2

k

� �� �− kþ1ð Þ
2

ð10Þ

where k > 0, Γ(⋅) denotes gamma function.

The density of a GED, normalized to mean = 0 and
variance = 1, is expressed as

f x; vð Þ ¼ v exp −0:5 � x=λj jv½ �
λ � 2 1þ1=vð ÞΓ

1
v

� � ð11Þ

where λ is a constant which is defined as λ ¼
½2−2

vΓð1=vÞ=Γð3=vÞ�
1
2 , and v denotes a shape parameter.

Specially, for v = 2, x follows standard normal distribu-
tion. For v < 2, tails of the distribution of x are heavier
than that of the normal distribution.
In this paper, the innovations with normal distribution

(νt ∼i:i:d:Nð0; 1Þ), t-distribution (νt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk−2Þ=kp

x ∼i:i:d: tð0; 1
; kÞ ) and GED ( νt ∼i:i:d:GEDð0; 1; vÞ ) are integrated into
asymmetric GARCH type models, respectively.

2.4 Estimation
In this work, Conditional Maximum Likelihood Estimate
(CMLE) is introduced to specify asymmetric GARCH
type model with the normal distribution, such as GJR,
APARCH and EGARCH. A Marquardt algorithm, a
popular refined version of a Gauss-Newton algorithm, is
employed to optimize the iterative process.
Furthermore, by maximizing the log-likelihood function,

the estimates of parameters in the heavy-tailed asymmet-
ric GARCH type models can be also calculated, given the
condition that vt follows t-distribution or GED for GJR-
GED, GJR-t, APARCH-t, APARCH-GED, EGARCH-t,
and EGARCH-GED, respectively. A BHHH algorithm, in-
stead of the Marquardt algorithm, is introduced to carry
out the iterative process [21].

3 The enhanced NIC analysis
3.1 The classical NIC
Reference [14] proposed the news impact curve (NIC) as
the recommended method to analyze asymmetry in how
new information impacts the following period variance.
In classical NIC, by keeping the information dated t-2

and earlier as constant, the implicit relationship between
εt-1 and ht can be highlighted. To simplify the problem,
all lagged conditional variances are estimated at the
numerical level of the unconditional variance.
In particular, for the standard GARCH model, the

NIC is a symmetric curve with the quadratic function,
which has a symmetry axis, εt-1 = 0. In the typical asym-
metric GARCH model, the NIC is an asymmetric curve
with the minimum at εt-1 = 0.
In this study, to simplify the discussion, the lowest

point of the NIC is removed to the original point. For
instance, the NIC of GJR (1, 1) model is shown as
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f ht ¼ α1 þ γð Þε2t−1; if εt−1≥0
ht ¼ α1ε2t−1; if εt−1 < 0

ð12Þ

Note that the lagged conditional variance is estimated
at its unconditional level.

3.2 The benchmark symmetric curve (BSC)
Since the NIC of standard GARCH is symmetric, it is
often used as a benchmark to illustrate the asymmetry of
other GARCH type models. Reference [14] uses the NIC
of GARCH model as a benchmark; it is a good choice
for GJR, but not for APARCH or another asymmetric
GARCH models with complicated structure. That is to
say, due to a variety in the left of variance eqs. (7–9), the
shapes of NIC of GARCH type models are greatly differ-
ent from this benchmark curve based on GARCH. In
this case, the comparison with the NIC of GARCH
might not be proper. A new form of the benchmark is
derived as follows.
The conditional variance equation of a parametric

asymmetric GARCH type model can be decomposed as

g htð Þ ¼ f Ið Þ þ ~η εt−1;⋯; εt−i;⋯; εt−q
� 	 ð13Þ

Considering the classical assumption of NIC, the news
dated t-2 and earlier is held. Specification of (13) can be
reduced to (14)

g htð Þ ¼ f Ið Þ þ η εt−1ð Þ ð14Þ
where η(εt-1) is a function decided by εt-1, which has the
asymmetric parameter to illustrate the asymmetry in
volatility, while f(I) has no relevance with εt.
Assigning the asymmetric parameter of the η(εt) zero,

the ηeven(εt) is obtained, which is obviously an even func-
tion of εt.
The Benchmark Symmetric Curve (BSC) of an asym-

metric GARCH type model, noting as XGARCH, can be
defined by

HXGARCH≜g htð Þ ¼ f Ið Þ þ ηeven εt−1ð Þ ð15Þ
where, f(I) + ηeven(εt-1) is a function decided by εt-1. And
the H-εt-1 curve is the BSC of XGARCH model.
For example, the BSC of APARCH (1, 1) model can be

derived as

HAPARCH ¼ h
δ
.
2

t ¼ α0 þ β1h
δ
.
2

t−1 þ α1 εt−1j jδ ð16Þ

3.3 The asymmetric curve index (ACI)
The asymmetric volatility brought by new information is
explicitly recognized by the NIC. Though reference [21]
proposed the method that can determine the level of
asymmetry by the figure of the NIC, the quantitatively
evaluating method is lacking. Asymmetric Curve Index

(ACI), which can give a quantitative judge to the extent
of volatility asymmetry, is proposed in this work.
A parametric GARCH type model, either asymmetric

or symmetric, can be decomposed as

g htð Þ ¼ f Ið Þ þ η εtð Þ ð17Þ

where, η(εt) is a function decided by εt, while f(I) is ir-
relevant to εt.
Let εt = Εt, when εt > 0, the ACI is defined by

ACI ¼ η Εtð Þ−η −Εtð Þ
η Εtð Þ þ η −Εtð Þ ð18Þ

Obviously, if the GARCH type model has a symmetric
structure, the ACI is fixed at zero consequentially.

ACIGARCH ¼ η Εtð Þ−η −Εtð Þ
η Εtð Þ þ η −Εtð Þ ¼

0
2η Εtð Þ ¼ 0 ð19Þ

Then, the novel ACIs are applied to some typical
asymmetric GARCH type models.
For the GJR-GARCH (1, 1) model, the ACI can be ob-

tained as:

f

η Εtð Þ ¼ α1Ε2
t−1

η −Εtð Þ ¼ α1Ε
2
t−1 þ γΕ2

t−1 ¼ α1 þ γð ÞΕ2
t−1

ACIGJR ¼ η Εtð Þ−η −Εtð Þ
η Εtð Þ þ η −Εtð Þ ¼

α1−α1−γ
α1 þ α1 þ γ

¼ −γ
2α1 þ γ

ð20Þ

Note that in the GJR GARCH model, the ACIGJR does
not depend on Et-1. It just depends on the parameter of
γ and α1.

For the APARCH (1, 1) model, the ACI can be
expressed as

f

η Εtð Þ ¼ α1 1−γð ÞΕt−1ð Þδ ¼ α1 1−γð Þδ Εt−1ð Þδ
η −Εtð Þ ¼ α1 −1−γð Þ −Εt−1ð Þð Þδ ¼ α1 1þ γð Þδ Εt−1ð Þδ

ACIAPARCH ¼ η Εtð Þ−η −Εtð Þ
η Εtð Þ þ η −Εtð Þ ¼

α1 1−γð Þδ−α1 1þ γð Þδ
α1 1−γð Þδ þ α1 1þ γð Þδ

¼ 1−γð Þδ− 1þ γð Þδ
1−γð Þδ þ 1þ γð Þδ

ð21Þ

For the EGARCH (1, 1) model the ACI can be derived
as
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f

η Etð Þ ¼ α1 þ ϕ1ð Þ Εt−1

σ
¼ α1 þ ϕ1

σ
Εt−1

η −Etð Þ ¼ −α1 þ ϕ1ð Þ−Εt−1

σ
¼ α1−ϕ1

σ
Εt−1

ACIEGARCH ¼ η Εtð Þ−η −Εtð Þ
η Εtð Þ þ η −Εtð Þ

¼ α1 þ ϕ1− α1−ϕ1ð Þð ÞΕt−1

α1 þ ϕ1 þ α1−ϕ1ð Þð ÞΕt−1
¼ 2ϕ1

2α1
¼ ϕ1

α1
ð22Þ

Note that in all GARCH type models, the ACIs are
only governed by the parameter of variance equations.
With ACIs, the asymmetry of the NIC can be measured
quantitatively.

4 Case study
Firstly, the asymmetry effect in the volatility of wind
power time series is witnessed by modeling asymmetric
GARCH type models. News Impact Curve is applied to
analyze the asymmetry characteristics in wind power
series. Furthermore, the application of new notions, BSC
and ACI, are illustrated. Finally, the forecasting preci-
sions of all the asymmetric GARCH-type models are
compared.

4.1 Data description
Considering that Yancheng, a city with abundant coastal
wind resources in east China, is able to represent the
pattern of wind power in East China, Data of wind farm
groups in Yancheng, is used to collate the results gener-
ated by the asymmetric GARCH wind power forecasting
models.
The sample originates from the wind power data be-

tween April 1 and April 7. The wind power data is cap-
tured every 5 min, thus, there are 288 data points each
day, and the overall data sample includes 2016 points of
data. The statistics of the data is summarized in Table 1.
The 5-min forecasting of wind power on April 8 by

GARCH type models is provided. Forecasting precisions
of these models are verified by a comparison with the
actual data, in terms of several statistical indices.

4.2 Modeling
The results of an ADF test and PP test are consistent
with the fact that the original wind power series Yt is
not stationary at a 5% significance level.
Differencing is used to get the first-differenced series

It. At the 1% significance level, the statistics of the ADF
test is statistically significant. Moreover, the result of PP
test is in accord with the result of ADF test. Therefore,
the stationarity of It is verified and the stationary pre-
condition of modeling is satisfied. The following model-
ing focuses on It.

4.3 Parameter estimate
The ARMA structure, including p autoregressive (AR)
and q moving average (MA) terms, is used to depicted
the conditional mean of the GARCH type model. The
conditional mean equation of the ARMA-GARCH-M
model is given as

It ¼ ω−E g htð Þð Þ þ
Xp
j¼1

ϕiIt−i þ εt þ
Xq
i¼1

θiεt−i þ g htð Þ

¼ ~ωþ
Xp
j¼1

ϕiI t−i þ εt þ
Xq
i¼1

θiεt−i þ g htð Þ

ð23Þ

Based on reference [7], the orders of model are determined
as ARMA (4, 5)-GARCH (1, 1)-M with g(ht) = δht (GARCH-
M1, for short). Furthermore, the parameter set ΘGARCH= (ϑ,
δ,Ω, α1, β1) is obtained by CMLE, where ϑ stands for the
ARMA parameter subset in a conditional mean equation.
Similarly, with the same routine, the GARCH-M2 following
(5) and the GARCH-M3 following (6) can be obtained, re-
spectively. Moreover, inducing the asymmetric GARCH
structure,the GJR-M1, GJR-M2, GJR-M3, EGARCH-M1,
EGARCH-M2, EGARCH-M3, APARCH-M1, APARCH-M2,
and APARCH-M3 can be obtained.
Parameters of 9 asymmetric GARCH-M models

estimated by CMLE, are shown in Table 2.
In view of the heavy tail effect in the wind power vola-

tility, these asymmetric GARCH-M models are general-
ized to heavy tail versions. Estimates of the 9
asymmetric GARCH-M models with t- distribution and
the 9 asymmetric GARCH-M models with GED are
summarized in Table 3. Similarly, the standard error is
presented in parentheses.
According to Table 1 and Table 2, it can be found that:

1) The witness of asymmetric conditional volatility is
verified by the asymmetric parameter in every GARCH
type model. According to Table 1, the estimated value
of ϕ in (9) is 0.098227, 0.095975 and 0.095157
respectively; the estimated value of γ in (7) is − 0.11382,
− 0.11407, and − 0.11595 respectively; the estimated

Table 1 The statistics of data

Statistics Yt

Mean 65.5 MW

Median 63.5 MW

Std. Dev. 42.83 MW

Skewness 0.429

Kurtosis 2.516

Observations 2016
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value of γ in (8) is − 0.78405, − 0.71568, and− 0.66128,
respectively. All asymmetric parameters are significant,
and the existence of asymmetric volatility is witnessed.
Moreover, owing to the definition of ϕ and γ, the
physical meaning of asymmetric effect is consistent.
That is to say, if the innovation is positive, the future
volatility will be stronger than the case where the
innovation is negative in the same magnitude. Note that
the asymmetric effect of wind power time series is
similar to the effect of load time series.

2) The estimated parameters, ϕ and γ, of the fat-tail asym-
metric GARCH-M model in Table 2 are in accordance
with the corresponding parameters of the GARCH-M
model in Table 1. Despite significant difference among
these models, The existence of asymmetric effect of the
wind power time series is affirmed.

3) The values of GED shape parameters of all GED
versions of asymmetric GARCH models between
1.56 and 1.57. In this case, GED has heavier tails
than normal distribution. Moreover, the t-
distribution freedom parameters in the t-
distribution version of asymmetric GARCH models
are significant. Therefore, the heavy tail effect in
wind power series is doubly confirmed.

4.4 The application of NIC and BSC
With the discussion in Section 3, the enhanced NIC is
proposed to analyze the impact of positive and negative
idiosyncratic shocks on the volatility of the wind power
time series.

The choice of different volatility compensation
terms has little influence on the shape of the NIC in
a practical wind power time series. To simplify the
discussion, only the type I GARCH-M structure,
defined by (4), is employed in the mean equation,
and NICs and BSCs of the asymmetric GARCH-M1

models are presented.

1) GJR-M1

To simplify the comparison, all the curves have been
moved to the original point. According to Table 1, the
equation of NICs of GJR-M1 models with normal distri-
butions is shown as

f ht ¼ α1ε
2
t−1 ¼ 0:1527ε2t−1 εt−1≥0

ht ¼ α1 þ γð Þε2t−1 ¼ 0:0389ε2t−1 εt−1 < 0
ð24Þ

According to the definition of BSC, the equation of
GJR-M1 BSC that has been moved to the original point
is shown as

Ht GJR ¼ ht ¼ α1ε2t−1 ¼ 0:1527ε2t−1 ð25Þ

Similarly, according to Table 1, the equations of NICs
of GJR-M1 models with t-distributions and GEDs are
shown as

f ht ¼ α1ε
2
t−1 ¼ 0:1539ε2t−1 εt−1≥0

ht ¼ α1 þ γð Þε2t−1 ¼ 0:0429ε2t−1 εt−1 < 0
ð26Þ

Table 2 Parameter estimate of standard asymmetric GARCH

δ C AR(1) AR(4) MA(1) MA(5) Ω α1 β1 φ γ δ

GJR -M1 −0.01707 0.138262 0.758611 0.071532 −0.53293 −0.05708 0.061024 0.152734 0.90498 – −0.1138 –

(0.011206) (0.127687) (0.059887) (0.028938) (0.070243) (0.026714) (0.020114) (0.01688) (0.009446) – (0.01872) –

GJR -M2 −0.12493 0.252579 0.757966 0.071646 −0.53252 − 0.05708 0.063384 0.151793 0.905159 – − 0.1141 –

(0.066946) (0.135594) (0.059805) (0.028851) (0.070177) (0.026629) (0.020165) (0.016692) (0.009336) – (0.01857) –

GJR -M3 −0.15777 0.184332 0.754775 0.071773 −0.52984 −0.05666 0.06315 0.151475 0.906252 – −0.1160 –

(0.078565) (0.127137) (0.060031) (0.028712) (0.070462) (0.026597) (0.01984) (0.016569) (0.009157) – (0.01840) –

APARCH-M1 −0.03011 0.189513 0.741602 0.066549 −0.50437 − 0.06032 0.029162 0.065429 0.939531 – −0.7841 1.0121

(0.011153) (0.120606) (0.056915) (0.027478) (0.067943) (0.027301) (0.008198) (0.007594) (0.007298) – (0.11821) (0.1362)

APARCH-M2 −0.15607 0.333815 0.735154 0.069739 − 0.49993 − 0.05877 0.030289 0.06851 0.93594 – − 0.7157 1.1144

(0.064421) (0.132455) (0.057355) (0.027481) (0.068379) (0.027259) (0.009412) (0.008408) (0.00783) – (0.1200) (0.1502)

APARCH-M3 −0.1463 0.228257 0.726652 0.072908 −0.49291 −0.05751 0.029773 0.07136 0.933465 – − 0.6613 1.2000

(0.071718) (0.121132) (0.058073) (0.027401) (0.068928) (0.02723) (0.010149) (0.008975) (0.00815) – (0.1159) (0.1634)

EGARCH-M1 −0.03180 0.184432 0.740065 0.068059 −0.50353 −0.06014 − 0.0732 0.12471 0.988158 0.09823 – –

(0.01137) (0.117749) (0.056588) (0.027494) (0.067426) (0.027228) (0.011587) (0.014321) (0.003097) (0.01060) – –

EGARCH-M2 −0.1428 0.317678 0.732846 0.069608 −0.49802) −0.05928 − 0.08167 0.132828 0.98937 0.09598 – –

(0.05914) (0.121551) (0.057383) (0.02746) (0.068276 (0.027198) (0.011812) (0.015118) (0.00285) (0.01079) – –

EGARCH-M3 −0.1095 0.219511 0.724388 0.071589 −0.49089 −0.05744 − 0.08839 0.138758 0.990784 0.09516 – –

(0.05682) (0.112735) (0.058415) (0.027348) (0.069065) (0.027307) (0.012083) (0.01567) (0.002564) (0.01082) – –
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f ht ¼ α1ε2t−1 ¼ 0:1552ε2t−1 εt−1≥0
ht ¼ α1 þ γð Þε2t−1 ¼ 0:0410ε2t−1 εt−1 < 0

ð27Þ

Furthermore, the NICs of GJR-M1 models with differ-
ent distributions and the BSC of GJR-M1 are represented
as Fig. 1, respectively.
As shown in Fig. 1, Ht is plotted againstεt-1. The blue

line, red line and green line stand for the NIC of a stand-
ard GJR-M1 model, GJR-M1 with t-distributions and
GJR-M1 with generalized error distributions, respect-
ively. Note that black dotted line denotes the vertical
axis of the NIC group.
The Benchmark Symmetric Curve of GJR acts as a

benchmark. As illustrated in Fig. 1, the left branch of
GJRGARCH _NIC is lower than the right branch. It is
indicated that positive shocks impose more influence on
volatility than negative shocks with the same magnitude.
It can be found that the asymmetry of the NIC can be
verified distinctly, with the help of the symmetric struc-
ture of the BSC.

2) APARCH-M1

Furthermore, the equation of NICs of APARCH-M1

models with normal distributions is shown as

f h
δ
.
2

t ¼ α1 1−γð Þδεδt−1 ¼ 0:1175εδt−1 εt−1≥0

h
δ
.
2

t ¼ α1 1þ γð Þδ −εt−1ð Þδ ¼ 0:0139 −εt−1ð Þδ εt−1 < 0

ð28Þ
According to the definition of BSC, the equation of

APARCH-M1 BSC that has been moved to the original
point is shown as

HAPARCH ¼ h
δ
.
2

t ¼ α1 ¼ 0:0654 εt−1j jδ ð29Þ
Similarly, According to Table 1, the equations of NICs

of APARCH-M1 models with t-distributions and GED
are shown as

f h
δ
.
2

t ¼ α1 1−γð Þδεδt−1 ¼ 0:1526εδt−1 εt−1≥0

h
δ
.
2

t ¼ α1 1þ γð Þδ −εt−1ð Þδ ¼ 0:0609 −εt−1ð Þδ εt−1 < 0

ð30Þ

f h
δ
.
2

t ¼ α1 1−γð Þδεδt−1 ¼ 0:1232εδt−1 εt−1≥0

h
δ
.
2

t ¼ α1 1þ γð Þδ −εt−1ð Þδ ¼ 0:0209 −εt−1ð Þδ εt−1 < 0

ð31Þ
Furthermore, the NICs of APARCH-M1 models with

different distributions and the BSC of APARCH-M1 are
represented as Fig. 2, respectively.

3) EGARCH

The equation of NICs of EGARCH-M1 models with
normal distributions is shown as

f
lnht ¼ α1 þ ϕ1

σ
εt−1 ¼ 0:0627εt−1 εt−1≥0

lnht ¼ −α1 þ ϕ1

σ
εt−1 ¼ −0:0075εt−1 εt−1 < 0

ð32Þ
According to the definition of BSC, the equation of

EGARCH-M1 BSC that has been moved to the original
point is shown as

HEGARCH ¼ lnht ¼ α1
σ

j εt−1 j¼ 0:0351 j εt−1 j ð33Þ

Similarly, according to Table 1, the equations of NICs
of EGARCH -M1 models with t-distributions and GEDs
are shown as.

f
lnht ¼ ϕ1 þ α1

σ
εt−1 ¼ 0:0681εt−1 εt−1≥0

lnht ¼ ϕ1−α1
σ

εt−1 ¼ −0:0165εt−1 εt−1 < 0

ð34Þ

Fig. 1 The NICs and BSC of GJR-M1 models Fig. 2 The NICs and BSC of APARCH-M1 models
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f
lnht ¼ ϕ1 þ α1

σ
εt−1 ¼ 0:0650εt−1 εt−1≥0

lnht ¼ ϕ1−α1
σ

εt−1 ¼ −0:0107εt−1 εt−1 < 0

ð35Þ

Furthermore, the NICs of EGARCH -M1 models with
different distributions and the BSC of EGARCH -M1 are
demonstrated in Fig. 3, respectively.
Note that the curves of EGARCH are non-

differentiable at the lowest point and the curves are
evidently skewed towards left.
The results by NICs of GJR-M1 are confirmed with

the NICs of the APARCH -M1 and EGARCH -M1

models. It is identified that asymmetric effect basically
remains stable in spite of different options of specifica-
tion. In particular, all the curves reflect an obvious shift
to the left. Through the application of the NIC and BSC,
how the asymmetric effects between different shocks
work is highlighted clearly.

4.5 Application of ACI
With the help of (20), (21) and (22), the calculated ACI
value of each model is summarized in Table 4.
As can be seen from Table 4 the asymmetry of the NIC

is measured quantitatively. It is apparent that the three
conditional distributions specification of the same model
induce remarkably different ACI values. The influence of
conditional distribution on the ACI cannot be ignored.
Take the GJR-M model as an example: the ACI of

GJR-M1 with different conditional distribution is 0.594,
0.564 and 0.582, respectively. The ACI of GJR-M1-t has
the least value—that is to say, the asymmetry of
NIC_ GJR-M1-t is the weakest.
Furthermore, it appears that the GARCH type

models with t-distribution often relate to a compara-
tively low ACI value in the result. All ACIs of the
above GARCH type models with t-distribution have
the lowest value (that is, 0.564, 0.429 and 0.609 re-
spectively), while the NICs of models with normal

distribution are on the contrary. The significant asym-
metry of the above models could also be recognized
by the NICs.

4.6 Forecasting performance
The wind power forecasting formula is given by

Ŷ t ¼ Y t−1 þ Î ð36Þ

where Î are modeled by the asymmetric GARCH type
models, respectively. The GARCH model proposed by [16],
classical ARMA model are used as the benchmark model.
Based on these forecasting models mentioned, 5min wind
power forecasting results for the coming 24 h are given.
Several classical criteria, ERMSE(Root Mean Squared Error),
EMAE(Mean Absolute Error) and EMAPE(Mean Absolute
Percentage Error), are listed in Table 5.
After analyzing Table 5, it turns out that the

APARCH-M1 model renders the best performance. Fig. 4
illustrates the out-of-sample forecasts by APARCH-M1

model, and the upper and lower limits of the prediction
interval is also presented.
Furthermore, the forecasting precisions of asymmetric

GARCH-M models and their generalized version are sat-
isfied and better than the traditional GARCH-M model.

Fig. 3 The NICs and BSC of EGARCH-M1 models

Table 4 ACI value of Asymmetric GARCH-M1 Models

GJR-M1 APARCH-M1 EGARCH-M1

Normal t G Normal t G Normal t G

ACI 0.594 0.564 0.582 0.789 0.429 0.710 0.788 0.609 0.718

Bold entries are all ACIs with t-distribution that have the lowest value

Table 5 Forecasting precision of proposed models

Name ERMSE(MW) EMAE(MW) EMAPE(%)

TP 16.4495 12.0368 17.468

ARMA 5.1308 3.4087 4.693

GARCH-M1 5.1023 3.3850 4.678

GARCH-M2 5.1183 3.400 4.684

GARCH-M3 5.1242 3.4066 4.686

GJR-M1 5.0891 3.3777 4.657

GJR-M2 5.1034 3.3859 4.656

GJR-M3 5.1087 3.3903 4.655

EGARCH-M1 5.0821 3.3549 4.632

EGARCH-M2 5.1014 3.3753 4.641

EGARCH-M3 5.1037 3.3823 4.647

APARCH-M1 5.0791 3.3521 4.630

APARCH-M2 5.1006 3.3741 4.640

APARCH-M3 5.1041 3.3821 4.646

Bold entries are value in APARCH-M1
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5 Conclusions
In this paper, an investigating framework for considering
the impact of news on volatility in wind power is
provided.
First, the asymmetric effect on wind power volatility is

reconfirmed. With the asymmetric GARCH model, it is
evident that the impacts of negative shocks on volatility
are weaker than positive shocks, ceteris paribus.
Second, the Benchmark Symmetric Curve is proposed

as the new benchmark, which gives an analytical frame-
work to compare the NIC of asymmetric GARCH
models.
Third, the Asymmetric Curve Index (ACI) provides a

corresponding quantitative measure to the asymmetry of the
NIC. The case study validated the efficiency of an ACI.
In summary, the refined NIC analysis is advocated to

describe heteroskedasticity. Thanks to the GARCH
models, the theoretical analysis on asymmetric volatility
in wind power time series can contribute to a further
perception of some intrinsic features of wind power and
considerably improve the forecasting precision.
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