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Abstract

Energy production from renewable sources offers an efficient alternative non-polluting and sustainable solution.
Among renewable energies, solar energy represents the most important source, the most efficient and the least
expensive compared to other renewable sources. Electric power generation systems from the sun’s energy typically
characterized by their low efficiency. However, it is known that photovoltaic pumping systems are the most
economical solution especially in rural areas. This work deals with the modeling and the vector control of a solar
photovoltaic (PV) pumping system. The main objective of this study is to improve optimization techniques that
maximize the overall efficiency of the pumping system. In order to optimize their energy efficiency whatever, the
weather conditions, we inserted between the inverter and the photovoltaic generator (GPV) a maximum power
point adapter known as Maximum Power Point Tracking (MPPT). Among the various MPPT techniques presented in
the literature, we adopted the adaptive neuro-fuzzy controller (ANFIS). In addition, the performance of the sliding
vector control associated with the neural network was developed and evaluated. Finally, simulation work under
Matlab / Simulink was achieved to examine the performance of a photovoltaic conversion chain intended for
pumping and to verify the effectiveness of the speed control under various instructions applied to the system.
According to the study, we have done on the improvement of sliding mode control with neural network. Note that
the sliding-neuron control provides better results compared to other techniques in terms of improved chattering
phenomenon and less deviation from its reference.

Keywords: Maximum power point tracking (MPPT), Adaptive Neuro-fuzzy inference systems (ANFIS, Photovoltaic
(PV) systems, Fuzzy logic controller (FLC), Pump, Sliding mode controller

1 Introduction
Human beings need abundant amount of energy at an
increasing rate for their sustenance and good living.
Nowadays, this energy is mostly derived from fossil fuel
such as coal, oil, natural gas and from nuclear power.
But the above resources are not at all stable and reliable.
The non-renewable resources like fossil fuel will last
only about 50–75 years. In this era, other alternatives
like renewable resources such as solar, tidal, wind etc.
have to be considered [1].
Of these resources, solar systems are gaining an in-

creasing interest and they are becoming a very

competitive solution, because many sunny days are avail-
able throughout the year. Moreover, environmental is-
sues such as population and global warming effects are
driving incites researchers towards the development of
renewable energy sources including solar systems. The
production of electricity in solar systems is based on
solar cells where the photons are absorbed by a semi-
conductor converted directly into electrical energy. The
electrical power / voltage characteristic of a photovoltaic
generator (GPV) represents the variation of the power as
a function of the voltage across the GPV. In this feature,
the GPV contains an optimal operating point generally
referred to as the maximum power point and is in a
non-linear area. To improve the efficiency of the photo-
voltaic (PV) system, it is necessary to set up an optimal
power point follower.
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There are several methods for obtaining the maximum
power of the photovoltaic generator [2], the most com-
mon methods are: Perturbation and Observation (P&O)
[3], the incremental conductance [4], most of these algo-
rithms fail to track the maximum power point regularly.
For this reason, methods based on “artificial intelligence”
are used. Among these methods, the authors [5, 6] pro-
posed the MPPT algorithm based on artificial neural
networks. The authors in [7, 8], proposed genetic algo-
rithms and in [9, 10], they used fuzzy logic to obtain the
optimal power point. In this paper, an adaptive network
based fuzzy inference system (ANFIS) control is used.
One of the most important applications of Photovol-

taic (PV) systems is for water pumping, hence, in rural
areas that have a considerable amount of solar radiation
and have no access to national grids. An effective solu-
tion must ensure that the PV generator (GPV) runs at
the maximum power point (MPP) and that the motor
runs at a high efficiency level. In this category, several
authors are interested in improving the performance of
photovoltaic pumping systems. A number of DC motor
driven pumps are already in use in several parts of the
world [11], but they suffer from maintenance problems
due to the presence of the commutator and brushes.

Hence, a pumping system based on an Induction
Motor (IM) can be an attractive proposal where reliabil-
ity and maintenance free operations are important [12,
13]. Several techniques for controlling a photovoltaic
pumping chain have been used. They are built around
different commands most used for electrical rotating
machines. These orders are intended to analyze their
performance in a photovoltaic pumping chain.
In particular, it contains the principles and configura-

tions of direct and indirect vector control applied to the
Synchronous Motor and Induction Motor [14]. Subse-
quently, the author [15] described direct torque control
with conventional regulators such as Proportional Inte-
gral and intelligent controllers based on fuzzy logic. It
seems that the PI regulators being limited by their
dynamics and their sensitivities vis-à-vis the parametric
variations. To overcome this drawback, the sliding mode
control was considered. However, this control technique
exhibits high frequency oscillations due to discontinuous
control [16]. Therefore, in order to improve the per-
formance, a control without speed sensors, associated
with the sliding mode controller technique associated
with neural network was analyzed.
This paper is organized as follows: In Section 2, the model-

ing of PV cell, DC-DC boost converter and the motor-pump
are introduced. In Section 3, the adaptive neuro-fuzzy con-
troller (ANFIS), and the sliding vector control associated

Fig. 1 Synoptic diagram of a pumping system

Fig. 2 General PV Cell Model

Table 1 Parameter values of YHM180-36 M PV panel

Optimum operation voltage 35.20 V

Optimum operation current 05.11 A

Open-circuit voltage 43.00 V

Short-circuit current 05.5 A

Maximum power at STC 180W

Peak Efficiency 16%

Temp. Coefficient of Isc -(0.06 ± 0.01) %/k

Temp. Coefficient of Voc -(78 ± 10) mV/k

Number of Cells 72
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with the neural network was developed and evaluated. Simu-
lation tests under Matlab / Simulink was achieved to exam-
ine the performance of a photovoltaic conversion chain
intended for pumping and to verify the effectiveness of the
speed control under various instructions applied to the sys-
tem are given in Section 4. Finally, Section 5 summarizes the
conclusions of the paper.

2 System descriptions
The proposed diagram of the photovoltaic pumping is shown
in Fig. 1. The schematic consists of a PV array, a boost con-
verter working as a maximum power point tracker (MPPT),

an inverter and a motor driving a pump controlled by the
neural networks with sliding mode controller.

2.1 Photovoltaic Array
A PV cell can be modeled from the equation defining
the static behavior of the PN junction of a conventional
diode. Thus, Fig. 2 illustrates the equivalent electrical
diagram of a real PV cell.
In Fig. 2, we consider the short-circuit current and

two resistors (series and shunt) modeling the losses due
to the connections. In static, the behavior of a PV cell
made up of a silicon-based PN junction can be described
by the following equation:

Fig. 3 Variations of MPP with changing: (a) Irradiation (b) Temperature

Fig. 4 PV model considering Rp resistance
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IPV ¼ Iph−Id−IRp ð1Þ

The value of Iph is heavily dependent on the irradi-
ance G and solar cell temperature Tc. The equation of
Iph can be expressed as follows:

Iph ¼ G
Gref

Isc;ref þ μsc:ΔT
� � ð2Þ

While the current flowing through the diode Id is
given by eq. (3):

Fig. 5 Bloc scheme of PV model

Fig. 6 Boost converter
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Id ¼ I0 exp
VPV þ IPV :Rs

A:VT

� �
−1

� �
ð3Þ

Where VT ¼ k:T
q .

Saturation current I0 of solar cells can be
expressed in a mathematical equation that has a re-
lationship with the temperature of the solar cell as
follows [8]:

I0 ¼ a0:b
3
0: exp q:Eg

1
Tc;ref

−
1
Tc

� �
: A:kð Þ−1

� �
ð4Þ

Where a0 ¼ Isc;ref

expðVoc;ref
a Þ−1

and b0 ¼ Tc
Tc;ref

.

The thermal voltage a is presented by the following
equation:

a ¼ Ns:A:k:Tc

q
ð5Þ

The current IRp in a closed loop can be determined by
using Kirchhoff’s voltage law analysis, which is expressed
by eq. (6):

IRp ¼
VPV þ RsIPV

Rp
ð6Þ

Therefore, the output current IPV was previously
expressed by eq. (1), can be rewritten as follows:

IPV ¼ Iph−I0 exp
VPV þ IPV :Rs

A:VT

� �
−1

� �
−
VPV þ Rs:IPV

Rp

ð7Þ
A PV array is a group of several PV modules which

are electrically connected in series (Ns) and parallel (Np)

for generating more power. The equivalent circuit of a
PV array is expressed as follows:

IPV ¼ Np: Iph−I0 exp

VPV

Ns
þ IPV :Rs

Np

A:VT

0
BB@

1
CCA−1

2
664

3
775

2
664

3
775−

VPV :Ns

Np
þ Rs:IPV

Rp

ð8Þ

where:
IPV: Output current of solar cells (Ampere);
Iph: Photocurrent (Ampere);
VPV: Output voltage of solar cells (Volt);
μsc: Temperature coefficient of the short circuit

current provided by the manufacturer;
Eg: Silicon bandgap energy (Eg = 1.12 eV);
Tc: Temperature of the solar cell (Kelvin);
Tc, ref: Reference temperature of Solar Cells (Kelvin);

G, Gref: Irradiance and reference irradiance;
k: Boltzmann’s constant (1.381 × 10−23J/K );
q: Electron charge (1.60222 × 10−19C );
A: Ideality factor of PV technology (1 ≤ A ≤ 2);
Isc, Voc, Vmpp, Impp: Short circuit current, open circuit

voltage, maximum power point current and voltage
which are shown in Table 1.
The typical current-voltage (I-V) curve characteristics

of the PV module are shown in Fig. 3.
The photovoltaic system model developed under

MATLAB / Simulink is given by Figs. 4 and 5:

2.2 DC-DC boost converter
The power supplied by the photovoltaic generator is fed
to a boost converter, which is controlled using the
MPPT controller based on adaptive network based fuzzy
inference system (ANFIS). The boost converter is used
to boost the DC voltage of the panel. Duty cycle for
switching is determined by the MPPT controller, which
determines the present climatic condition and produces
an optimum value of duty cycle, as shown in Fig. 6.

Table 2 Variation of Ksp according to Nsq

Nsq 60 100 150

Ksp 0.00017 0.00030 0.00075

Fig. 7 Model of the centrifugal pump
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In steady state, the output voltage of the boost con-
verter can be calculated as [17]:

V 0 ¼ UR ¼ 1
1−D

V in ð9Þ

where D is the duty cycle of converter.

2.3 Pumping subsystem Modelling
A motor-pump consists of a centrifugal pump coupled
with a three-phase induction machine. Several types of
DC and AC motors are available for PV pumping sys-
tems. The choice of the motor is dependent on numer-
ous factors including size requirement, efficiency, price,
reliability and availability. Generally, the PV water
pumping system needs a water tank for storing water. If
there is no water tank or the system is used as potable
equipment, the battery set will be necessary.

2.3.1 Dynamic model of induction motor
The electrical model of the induction machine in the d-
q referential axis linked to rotating field is given by the
following equation [18, 19]:

Vsd ¼ Rs þ RrL2m
L2r

� �
isd þ Lsσ

disd
dt

−ωsLsσisq−
RrLm
L2r

φrd

V sq ¼ Rs þ RrL2m
L2r

� �
isq þ Lsσ

disq
dt

−ωsLsσisd−
pΩLm
L2r

φrd

8>><
>>:

ð10Þ
The mechanical modeling part of the system is given

by:

J
dΩ
dt

¼ Ce−Cr−fΩ ð11Þ

where, the electromagnetic torque is expressed by:

Ce ¼ p
3Lm
2Lr

φrdisq−φrqisd
� 	

ð12Þ

with:
Rs, Rr: Stator and rotor resistances respectively;

Fig. 8 Typical five-layer ANFIS system

Fig. 9 Training error
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Ls, Lr: Stator and rotor inductances respectively;
Lm, ωs: Mutual inductance and Stator angular

frequency;
Ω, σ: Rotor speed and total leakage coefficient;
J, f: Total inertia and friction coefficient;
Cr, p: Load torque and number of pole pairs.

2.3.2 Pump model
Many varieties of pumps are used with a PV pumping
system. In our case, a centrifugal pump is considered.
This type of pump is simple and requires a minimum of
maintenance. In our case, we directly use the model ex-
pressing the output of the water flow (Qn) as a function
of the speed of the rotor shaft in revolutions per minute
at the engine pump, for different total loads.
A broad classification of pumps, directly related to the

general shape of the rotor, is introduced from the defin-
ition of the specific diameter (eq. (13)) and the specific

angular velocity (eq. (14)), two dimensionless numbers
derived from the similarity of the turbomachines [20]:

Ds ¼ D gHnð Þ14ffiffiffiffiffiffi
Qn

p ð13Þ

Ns ¼ ω
ffiffiffiffiffiffi
Qn

p

gHnð Þ34
ð14Þ

In general, pump manufacturers do not give the
physical parameters of the pump. Only the perform-
ance characteristic H = f(Q) is given by the manufac-
turer. Thus, knowing the values of speed, load height
and reference flow, it is possible to determine those
of the system using the following empirical formulas
[21]:

Fig. 10 ANFIS system

Fig. 11 Membership functions: (a) solar irradiance (b) PV cell temperature
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Nsq ¼
100

N
60

� � ffiffiffiffiffiffi
Qn

p

gH
Nep

� 	3
4

ð15Þ

Qn ¼ Ksp:N : Df
� �3 ð16Þ

Cr ¼ 0:3þ 3:9� 10−4ω1:8 ð17Þ

where Qn is the flow rate in m3/h, N is the speed of the
rotor (rpm), Ksp is a constant that depends on the spe-
cific speed of the pump, Df is the diameter of the bore-
hole, Cr is the load torque, Nsq: specific rotor speed, g:
Acceleration of gravity, Nep: pump number of stages and
ω is the rotor speed in rad/s.

The variations of the specific speed pump according the
specific rotor speed are given in Table 2:
The model of the proposed centrifugal pump is shown

in Fig. 7:

2.4 MPPT control for sunshine photovoltaic pumping
systems
2.4.1 MPPT adaptive network based fuzzy inference system
(ANFIS)
The neuro-fuzzy inference is a combination of Artificial
Neural Network (ANN) and Fuzzy Logic controller
(FLC). The ANN identifies the patterns and conforms to
them to deal with altering environments. On the order
hand, the fuzzy inference systems (FIS) combine the hu-
man knowledge and carry out the inference and process

Fig. 12 Inputs and Outputs of ANFIS after Training

Fig. 13 Sliding-neural network modelling architecture
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of decision making [22]. Two common fuzzy models, the
Mamdani and Takagi-Sugeno-Kang (TSK), are defined
for FIS.
The ANFIS is only able to use the TSK fuzzy model

due to its high calculative efficiency, adaptive techniques
and built in optimum. The controller provides smooth
less in convergence because of the fuzzy TSK inference
and adaptability as a result of ANN back-propagation

algorithms [23]. The structure of a typical five-layer
ANFIS system is illustrated in Fig. 8.
In the first layer, MFs will be defined for each of in-

puts. In the second layer, each node via multiplication
calculates the firing strength of a rule. The firing
strength is normalized in layer 3. Two common rules in
TSK fuzzy model are defined as:
Rule 1: if x is A1 and y is B1, then f1 = a1x + b1y + c1;
Rule 2: if x is A2 and y is B2, then f2 = a2x + b2y + c2.
Where ai, bi and ci are the design parameters defined

in the training plant. Also, Ai and Bi are the fuzzy sets
input [24].
In MATLAB, a structure of the model is determined

by using the inputs, output, MFs, and the relationship
among them. After that, the inputs and output training
data set should be collected to train the ANFIS. In fact,
the ANFIS can estimate the MF’s parameters by either
back propagation algorithms alone or the so-called hy-
brid mode which is a combination of least squares esti-
mation (LSE) and back propagation.
MATLAB/Simulink model of PV module is used to

generate the training data set for ANFIS by varying the
operating temperature in steps of 5 °C from 15 °C to
65 °C and the solar irradiance level in a step of 50W/m2

from 100W/m2 to 1000W/m2.

Fig. 14 MATLAB/Simulink model of the pumping system

Table 3 Motor pump set parameters

Parameter Value Unit

Induction motor Parameters

Rated voltage (RMS) 400 V

Frequency 50 Hz

Rated speed 1430 rpm

Stator winding resistance, Rs 6.3 Ω

Rotor winding resistance, Rr 6.3 Ω

Leakage reactance, xls = xlr 0.1568 Ω

Magnetizing reactance, xm 0.15 Ω

Poles, p 4

Centrifugal pump Parameters

Q 18 m3/h

H 10 m
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Fig. 15 Solar irradiance waveform

Fig. 16 Temperature waveform

Fig. 17 Waveform of induction motor mechanical speed
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The Neural Network Controller (NNC) is used to
estimate the PV array operating voltage (Vref), which
corresponds to Pmax at any given solar radiation and
cell temperature. Therefore, the inputs to the control-
ler are the solar radiation and the cell temperature.
The output of the controller is the optimum operat-
ing voltage.
The network is trained for 20,000 epochs and the target

error is set to 2.34%. The training error waveform is depicted
in Fig. 9, and the structure of ANFIS for this controller is
shown in Fig. 10. The advantages of the method are its rapid
tracking speed and high tracking accuracy.

Fig. 11 represents membership functions for the two
inputs, namely, solar irradiance and PV cell temperature.
Figure. 12 shows a fuzzy rule for the ANFIS inputs and
output are applied after training.

2.4.2 Sliding mode control design
The basic principle of sliding mode control consists in
moving the state trajectory of the system toward a prede-
termined surface called sliding or switching surface, and
in maintaining it around this latter with an appropriate
switching logic [25]. This is similar to a feed-forward con-
troller that provides the control that should be applied to

Fig. 18 Response of the system to the variation of G and T
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track a desired trajectory, which is in this case, the user-
defined sliding surface itself. Therefore, the design of a
sliding mode controller has two steps, namely, the defin-
ition of the adequate switching surface S (.) and the devel-
opment of the control law or the switching logic u.
The main disadvantage of Sliding Mode Control

(SMC) is the high switching frequency [26, 27]. To rem-
edy this phenomenon, the control must adapt to changes
in parameters or external disturbances. Therefore, a
Sliding-Neural Network is proposed to overcome the
chattering phenomenon.

2.4.2.1 Sliding mode surface
Consider a nonlinear system, which can be represented by
the following state space model in a canonical form [16]:

x � ¼ f x; tð Þ þ g x; tð Þuþ d tð Þy tð Þ ¼ x tð Þf ð18Þ
where, x ∈ℜn is the state vector, u ∈ℜn is the control vector,
y ∈ℜn is the output vector, f(x, t) and g(x, t) are two nonlin-
ear continuous uncertain functions supposed bounded.
The objective of control law u(t) to force the system

output y(t) in above equation and reference signal. We
take the general eq. (19) to determine the sliding surface
that given by:

S xð Þ ¼ d
dt

þ λ

� �n−1

e xð Þ ð19Þ

where e(x) is the difference between the controlled vari-
able and its reference eðxÞ ¼ x �−x.
With: x ¼ ½x; x �; :::; xn−1�T ;
λ: Positive constant;
n: The number of times to derive the surface to obtain

the control;
x: The controlled variable.

2.4.2.2 Application of neural networks in sliding
mode control
The integration of Neural Networks (NN) in a sliding con-
troller whose architecture proposed by [28], is given in
Fig. 13 where two neural networks are used in parallel to
achieve the equivalent command. The input of the first
network consists of the desired state and the current state
while the input of the second network is the surface S.

2.4.2.3 Sliding mode control of induction motor
The two switching functions defining the sliding surfaces
are given by:

S Ωð Þ ¼ Ωref −Ω ð20Þ
then:

S � Ωð Þ ¼ Ω �ref −Ω � ð21Þ

By replacing in eq. (21), the expression of Ω � taken
from eq. (11), and introducing the equivalent command
(isq = isq, eq + isq, n) we will have:

S � Ωð Þ ¼ Ω �ref − 3pLm
2 J

φrd;ref isq;eq þ isq;n
� �

−
p
J
Cr−

f
J
Ω

� �

ð22Þ

During the sliding phase and at steady state S(Ω), so S
�ðΩÞ ¼ 0 and isq, n = 0 from which we derive the expres-
sion of isq, eq:

isq;eq ¼ 2 J
3pLmφrd;ref

Ω �ref þ p
J
Cr þ f

J
Ω

� �
ð23Þ

The action of the discontinuous command isq, n must
satisfy the condition S S � < 0. By restoring eq. (22) in eq.
(23), it will result:

Fig. 19 Load torque profile
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S � Ωð Þ ¼ −
3pLm
2 J

φrd;ref isq;n ð24Þ

3 Simulation results
In order to demonstrate the effectiveness of the proposed
control technique applied to the photovoltaic water-pumping
system, some simulations have been carried out. The pro-
posed design scheme which is described by Fig. 14 was imple-
mented in MATLAB/Simulink software using parameters
given in Table 3.

3.1 Effects of the variation of the value of the solar irradiation
G and the temperature T on the storage of the water
In a first step, we choose to vary the solar irradiance
value and the temperature T as it is shown in Figs. 15
and 16, and to see its impact on the performances of the
photovoltaic water pumping.
Figure. 17 illustrates the waveform of the mechanical

speed of the induction motor which is closed to its opti-
mal value.
The same remark is given to the electromagnetic

torque shown in Fig. 18a and the flow shown in Fig.
18b. It is clearly shown that the induction motor is

Fig. 20 Speed response under load torque variation
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operating at its optimal conditions. Figure. 18c, repre-
sents the waveform of the centrifugal pump flow
which is closed to its optimal value for each value of
G and T.

3.2 Robustness study
3.2.1 Variation in the load torque
In a second step, we choose to vary load torque (resist-
ance torque) Cr to 30% of its initial value as shown in

Fig. 21 Robustness test for a variation in the rotor and stator resistances
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Fig. 19, in order to prove the robustness of the system
against external disturbances.
Figure 20a and b, shows respectively the waveform

of the motor speed and the pump flow. The rotor
speed is lightly affected by the variation of the load
torque at a short transient, and then return to the

optimal value. The same remark is given to the cen-
trifugal pump flow which proves that the water
pumping system operating at its optimal conditions.
Then, the robustness of the controlled system is
achieved by the neural network-sliding mode
controller.

Fig. 22 Robustness test for a variation in the rotor and stator inductances
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3.2.2 Variation in the parametric of induction motor
The performance of the proposed control scheme which is
based on NN-Sliding Mode Control are assessed again with
other four tests which are performed to study the influence of
the parametric variations for the stator and rotor resistances,
and stator and rotor inductances of the induction motor.

3.2.2.1 Variation in the stator and rotor inductances
The simulation results of robustness tests illustrated by
Figs. 21 and 22 for NN-Sliding Mode Control, show clearly
that the parameter variations of the induction motor have
practically no effect on the dynamics of speed response, ie
on the flow of water (or the need for water) even in the
presence of parametric variations. A variation in the resist-
ance or inductance of its nominal value does not affect the
response, but the rise varies by a few milliseconds.

4 Discussion and conclusion
The photovoltaic conversion systems are characterized
by the variation of their electrical power according to
the weather conditions because the power transferred to
the load rarely corresponds to the maximum power that
can provide the Photovoltaic generator (GPV). There-
fore, a command requiring the GPV to produce the
maximum available power at its terminals is essential to
improve the efficiency of the conversion system. For this,
we have proved that the use of the developed ANFIS-
MPPT algorithm can solve the degradation problem of
the GPV performance, following the power variation, ac-
cording to climatic factors which have enabled a good
tracking of the Maximum power point.
Thus, to improve the performance of a photovoltaic

pumping system, an evaluation of the control without
speed sensor based on sliding mode of the neural net-
work with the fuzzy logic has managed to regulate the
speed of the engine, then to optimize system perform-
ance. In addition, the strength quality of the proposed
controller appears clearly in the tests results under load
torque variation. Finally, this installation helps to
minimize the total cost since we choose to store the
water and not the energy that requires the use of electric
batteries.
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