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A matrix-perturbation-theory-based optimal
strategy for small-signal stability analysis of
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Abstract

In this paper, a sensitivity matrix based approach is proposed to improve the minimum damping ratio. The proposed
method also avoids burdensome deviation calculations of damping ratio of large-scale power grids when compared to
the Small-Signal-Stability Constrained Optimal Power Flow (SSSC-OPF) approach. This is achieved using the Matrix
Perturbation Theory (MPT) to deal with the 2nd order sensitivity matrices, and the establishment of an optimal
corrective control model to regulate the output power of generating units to improve the minimum damping
ratio of power grids. Finally, simulation results on the IEEE 9-bus, IEEE 39-bus and a China 634-bus systems show
that the proposed approach can significantly reduce the burden of deviation calculation, while enhancing power
system stability and ensuring calculation accuracy.
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1 Introduction
Small-signal stability of power systems is critical to the
system security of power grids due to large-scale con-
nections of power grids [1, 2], rapid development of
Ultra High Voltage Alternating Current (UHVAC) trans-
mission [3–5], high penetration of renewable energy
sources, etc [6–9].
Many reported work have shown that damping control-

lers can enhance small-signal stability [10]. In practice, the
re-dispatch of generator powers can also provide add-
itional measure to ensure the small-signal stability of a
power grid. Therefore, Small-Signal-Stability Constrained
Optimal Power Flow (SSSC-OPF) has become a ‘hot’
research topic. This is because SSSC-OPF can achieve an
appropriate security level while considering economic
objectives and technical constraints [11].
SSSC-OPF has been reported for improvement of

small-signal stability, but the existing work with high
calculation precision is time-consuming due to large
computation requirement when calculating the eigen-
value [10–15]. Eigenvalue sensitivity based Interior
Point Methods (IPM) have been proposed to improve

the power transfer capability with small-signal stability con-
straints [10, 11], which is an SSSC-OPF based Numerical
Eigenvalue Sensitivity (NES-SSSC-OPF). However, these
methods have to deal with the burden of heavy computa-
tion from the repetitive calculation of eigenvalues, and at
the same time, high precision cannot be guaranteed due to
the neglected high-order terms of the small-signal stability
constraints. In [12], this expected-security-cost optimal
power flow with small-signal stability constraints is ad-
dressed by the closed-form formula with extra computa-
tional burden to guarantee the calculation accuracy.
Approximate-singular-value-sensitivity-based IPM is used
to coordinate oscillation control in electricity market [13].
For the two methods proposed in [12, 13], both are very
time-consuming for calculating the Hessian of small-signal
stability constraints. An optimization method based on the
sequential quadratic programming algorithm with Gradient
Sampling [14] can ensure the global and efficient conver-
gence of SSSC-OPF [15]. However, the computation with
high precision is again time-consuming due to the complex
in formula derivation and sampling process.
Matrix Perturbation Theory plays an important role in

describing the changes in eigensolution [16–18] and has
been applied for structural dynamics [19], automation
control [20], design of power parameters [21], error
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analysis of power systems [22, 23], etc. In a power sys-
tem, the sensitivity obtained by MPT can evaluate the
key parameters to small-signal stability and can also be
applied for power dispatch and parameter design [24]. In
the case of small fluctuations in the operating parame-
ters, the 1st-order sensitivity of MPT can obtain the re-
sults with sufficient precision [25]. Power systems show
nonlinear characteristics, while larger disturbance causes
abrupt change of power system parameters [26]. The
2nd-order control strategy tolerates a larger disturbance
which can be regarded as a parameter disturbance of
more than 20% variation [24]. Therefore, the 2nd-order
sensitivity of system parameters with high precision be-
comes a concern.
In this paper, Matrix Perturbation Theory based Opti-

mal Strategy (MPT-OS), a hybrid method combining
IPM and the 2nd-order MPT is proposed to deal with
the sensitivity of damping ratio for improving of the
small-signal stability. The optimal calibration model is
established to improve system stability by IPM and the
MPT is used to deal with the Hessian Matrix of the
damping ratio. Since the Hessian Matrix calculation only
needs the original state matrix and perturbation vari-
ables in MPT, deviation calculation of the 2nd-order
sensitivities is not needed.
The remainder of this paper is organized as follows: In

Section 2, the control model of small-signal stability and
the partial derivative of damping ratio in SSSC-OPF are
addressed. A MPT based computing method for the sen-
sitivity of damping ratio is introduced in Section 3. In
Section 4, the proposed approach is validated on three
systems, and Section 5 draws the conclusion.

2 Optimal model of small-signal stability
2.1 The optimal model
The corrective control model can be described as
follows:

1) The objective function.

The minimum change of the output powers of the
generators is considered as the objective function as

f xð Þ ¼ min
X
i∈SG

ΔPGi
2 ð1Þ

where i ∈ SGi and SGi is the set of generators. PGi is the
active power output of the generator and P0

Gi is its initial
active power output of the generator. ΔPGi is the
regulating output power of the generator given as ΔPGi

¼ PGi−P0
Gi.

2) The equality constraints.

The power balance equation is:

PGi−PDi−V i

Xn
j¼1

Y ijV j cos θi−θ j−α
� � ¼ 0

QRi−QDi−V i

Xn
j¼1

Y ijV j sin θi−θ j−α
� � ¼ 0

8>>>><
>>>>:

ð2Þ

where i ∈ Sn and Sn is the set of nodes. PDi is the active
load, QRi is the reactive power output of the generator
and QDi is the reactive load; Kλi and θi are the voltage
amplitude and phase angles respectively. Yij and αij are
the amplitude and phase angle of the admittance matrix,
respectively.

3) Inequality constraints.
(1) Operation constraints are:

Pmin
Gi ≤PGi≤Pmax

Gi i∈SG
Qmin

Ri ≤QRi≤Q
max
Ri i∈SR

Vmin
i ≤V i≤Vmax

i i∈Sn

8<
: ð3Þ

where S
R
is the set of reactive power supplies. Pmin

Gi and
Pmax
Gi are the upper and lower limits of the active power

output of the generator, respectively. Qmin
Ri and Qmax

Ri are
the respective upper and lower limits of the reactive
power output of the generator, Vmin

i and Vmax
i are the

upper and lower limits of the voltage, respectively.

(2) Stability constraint is:

ξ≥ξ ð4Þ
where ξ is the system damping ratio and ξ is its lower
limit. The index ξ is to guarantee the system to be
small-signal stable, and for ξ < ξ , the system has small-
signal stability problem.

After the improvement of system stability, ξ = ξ0 + Δξ
where ξ0 is the initial damping ratio, and Δξ can be
written as:

Δξ ¼
X
i∈SG

K ξΔPGi þ 1
2
ΔPGiHξΔPGi

� �
ð5Þ

where Kξ and Hξ are the respective gradient matrix and
Hessian matrix of the damping ratio and active power of
the generators.
The small-signal stability corrective control model of

(1)–(5) can be described as:

min f x0ð Þ ð6Þ
s:t: h x0ð Þ ¼ 0 ð7Þ
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g ≤g x0ð Þ≤g ð8Þ

where x0 is the initial state variable, f(x) is the objective
function, h(x) and g(x) are the equality and inequality
constraints, respectively. g and g are the upper and
lower limits, respectively.

According to IPM, (8) can be written as gðx0Þ−l0−g ¼ 0

and gðx0Þ þ l0−g ¼ 0, where l0 is the slack variables with
l0 > 0.
Equations (6)–(8) can be written as Lagrange function

as:

L ¼ f x0ð Þ−yTh x0ð Þ−zT g x0ð Þ−lð Þ−μ
X

ln lð Þ ð9Þ

First-order optimality conditions (Karush Kuhn Tucker,
KKT) are:

Lx ¼ ∇ x f x0ð Þ−∇ xh x0ð Þy−∇ xg x0ð Þz ¼ 0
Ly ¼ ∇h x0ð Þ ¼ 0
LZ¼ g x0ð Þ−l−g ¼ 0
Ll ¼ LZe−μe ¼ 0

8>><
>>:

ð10Þ

where y and z are the respective Lagrange multipliers, μ
is the blockage parameter, L and Z are the diagonal
matrix of l and z, respectively, and e is the unit column
vector. The damping ratio constraints part of ∇xg(x) can
be written as Kξ.
Using Newton’s method to solve (10), the correction

equation is obtained:

H ∇ xh x0ð Þ
∇T

x h x0ð Þ 0

� �
Δx
Δy

� �
¼ L0x

Ly

� �
ð11Þ

where H ¼ ∇ 2
x f −∇

2
xhy−∇

2
xgz−∇ xgL−1Z∇T

x g , and cor-
rections are solved by iteration in (11). The damping
ratio constraints part of ∇ 2

xgðxÞ can be represent by
Hξ. Section 3 describes the detailed derivation process
of Kξ and Hξ.
The eigenvalue constraint has been considered in

many studies, but the damping ratio constraint has
been ignored. In this paper, the models of (1)–(5) are
established in a similar way by IPM. However, deriva-
tive calculations of damping ratio are complex due to
the implicit relationship between the generator active
power and the damping ratio, which seriously affects
the practicability of SSSC-OPF. The existing method
[12] spends significant computation time on heavy
eigenvalue computation of the QR method, which
avoids derivative calculations. Therefore, it is neces-
sary to effectively simplify computation in practical
application of SSSC-OPF. Compared to the existing
methods [12], the Kξ and Hξ are calculated by MPT in
the presented method, which avoids demanding de-
rivative calculations and reduces computing time.

2.2 Corrective control process
In Fig. 1, the steps of the small-signal stability optimal
strategy are as follows.

1) Small signal stability analysis.
The system stability is judged by small-signal stability
analysis.

2) Damping ratio sensitivity.
The eigenvalue and eigenvector sensitivities are
calculated by MPT. The damping ratio sensitivity
is deduced by eigenvalue and eigenvector
sensitivities.

3) The corrective control model of power dispatch.
The corrective control model is established to
improve the system stability by regulating the
output power of generating units.

4) Judgement of system stability.
The corrective control results are checked by
small signal stability analysis. If the results meet
the system stability requirement, the calculation
is stopped, otherwise, the corrective control
model is re-established to improve the system
stability.

Fig. 1 Optimization correction procedures. The Figure show
that the corrective control procedures of Matrix-Perturbation-
Theory-based Optimal Strategy to improve small-signal-stability
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3 Methods: damping sensitivity matrixes
3.1 Matrix perturbation theory
The calculation of Kξ and Hξ involves the change of state
matrix, perturbation variable and initial eigensolution in
MPT.

(1) Initial eigensolution

The state matrix is described as follows [27, 28]:

A0 ¼ ~A−~B~D
−1 ~C ð12Þ

dΔx
dt

¼ A0Δx ð13Þ

where ~A and ~B are the coefficient matrixes of the state
variables, ~C and ~D are the coefficient matrixes of the
non-state variables, A0 is the initial system state matrix,
and Δx is the small change of the system state variables.
The initial eigensolution contains the initial matrix
eigenvalue λ0, initial left eigenvector u0, initial right
eigenvector v0 and initial damping ratio ξ0:

A0v0 ¼ λ0v0
u0

TA0 ¼ λ0u0T

�
ð14Þ

λ0 ¼ α0 þ jβ0
ξ0 ¼

‐α0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α02 þ β0

2
q

8><
>: ð15Þ

(2) Perturbation variable and the change of state matrix

When the perturbation variable is the output power of
generating units ΔPGi, the change of state matrix ΔA can
be expressed as:

A ¼ A0 þ ΔA ð16Þ

where A0 and A are the original and new state matrixes,
respectively.
The change of state matrix ΔA is written as:

ΔA ¼
X
i∈SG

AsiΔPGi ð17Þ

ΔPG ¼ ΔPG1;ΔPG2; :…;ΔPGi;…;½ �T
As ¼ As1;As2; :…;Asi;…;½ �T



ð18Þ

where Asi is the sensitivity of the state matrix and is
given as Asi =ΔAi/ΔPGi.

(3) Eigenvalue sensitivity

The eigensolution of the uncertain relation problem is
described as [21, 22]:

A0 þ ΔAÞ vi0 þ Δvið Þ ¼ λi0 þ Δλið Þðvi0 þ ΔviÞ i∈SLð
ð19Þ

where SL is the set of system state variables, λi0 is the ith
initial eigenvalue, vi0 is the ith initial right eigenvector,
Δvi is the change of the ith right eigenvector, and Δλi is
the change of the ith eigenvalue. According to MPT, the
eigenvalue λi and eigenvector vi of (19) are represented
by [16]:

λi ¼ λi0 þ λi1 þ λi2
vi ¼ vi0 þ vi1 þ vi2



ð20Þ

where i ∈ SL, λi1 and vi1 are the 1st-order perturbation
values, and λi2 and vi2 are the 2nd-order perturbation
values.
Substituting (19) into (20) and ignoring the perturb-

ation values equal or higher than the 3rd-order yield:

o0 : A0vi0 ¼ λi0vi0
o1 : A0vi1 þ ΔAvi0 ¼ λi0vi1 þ λi1vi1
o2 : A0vi2 þ ΔAvi1 ¼ λi0vi2 þ λi1vi1 þ λi2vi0

8<
: ð21Þ

The 2nd-order Taylor expansion of (21) is described as

λi ¼ λi0 P0
G

� �þ KλiΔPG þ 1
2
ΔPG

THλiΔPG

vi ¼ vi0 P0
G

� �þ KviΔPG þ 1
2
ΔPG

THviΔPG

8><
>: ð22Þ

where i ∈ SL, Kλi and Kui are the gradient matrixes of
eigenvalue and eigenvector, respectively, and Hλi is the
Hessian matrix of eigenvalue. The gradient matrix and
Hessian matrix can be written as:

Kλi ¼
∂Δλi
∂ΔPG1

;
∂Δλi
∂ΔPG2

;…;
∂Δλi
∂ΔPGj

; :…

� �

Kvi ¼
∂Δvi
∂ΔPG1

;
∂Δvi
∂ΔPG2

;…;
∂Δvi
∂ΔPGj

; :…

� �
8>><
>>:

ð23Þ

Hλi ¼
∂2Δλi
∂ΔPG1

2 …
∂2Δλi

∂ΔPGj∂ΔPG1:… :… :…
∂2Δλi

∂ΔPG1∂ΔPGj
…

∂2Δλi
∂ΔPGj

2

2
6664

3
7775 ð24Þ

where i ∈ SL, and j ∈ SG.
According to MPT and the normalized eigenvectors,

the eigenfunctions are substituted into (15) and com-
bined with (21) and (23). The 1st-order perturbations
can be described as [22]:

λi1 ¼ uTi0ΔAvi0 ð25Þ
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vi1 ¼

X
−uTj0ΔA

Tvi0 þ λi0uTj0vi0
� �

v j0
j ¼ 1
j≠i

λ j0−λi0
ð26Þ

Combining (17), (25) and (26), Kλi, Kvi can be written
as:

Kλi ¼ uTi0Asvi0 ¼ ∂Δαi
∂ΔPGj

þ j
∂Δβi
∂ΔPGj

ð27Þ

Kvi ¼ vi1
ΔPG

ð28Þ

where i ∈ SL, and Kλi can be described by the 1st-order
eigenvalue sensitivity ∂Δα/∂ΔPG and ∂Δβ/∂ΔPG.
vi1 is given as:

vi2 ¼
XSl
j¼1

α jv j0 ð29Þ

Combining (21) and (29), the 2nd-order eigenvalue
can be expressed:

A0

XSl
j¼1

α j
�v j0 þ ΔAvi1 ¼ λi0

XSl
j¼1

α j
�v j0 þ λi0vi1

þλi2vi0
ð30Þ

Equation (30) is multiplied by the left eigenvector ui0:

XSl
j¼1

α jui0A0v j0 þ ui0ΔAvi1 ¼
XSl
j¼1

α jui0λi0v j0 þ ui0λi0vi1
þui0λi2vi0

ð31Þ
Utilizing orthogonality relation of eigenvector, (31) is

derived to:

λi2 ¼ uTi0ΔAvi1−λi1u
T
i0vi1 ð32Þ

Utilizing (17), (27) and (28), (32) can be express:

λi2 ¼ ΔPG
TuTi0AsKviΔPG−ΔPG

TKλiu
T
i0KviΔPG

¼ ΔPG
Th1ΔPG þ ΔPG

Th2ΔPG
ð33Þ

h ¼ h1 þ h2 ð34Þ

where matrix h is symmetric and the Hessian matrix of
eigenvalue Hλi are given as:

Hλi ¼ hþ hT ¼ ∂2Δαi
∂ΔPG

2 þ j
∂2Δβi
∂ΔPG

2 ð35Þ

λi2 ¼ ΔPG
THλiΔPG ð36Þ

(4) The gradient matrix and the Hessian matrix of
damping ratio

With the 2nd-order Taylor expansion of damping
ratio:

ξ i ¼ ξ i0 þ K ξiΔPG þ 1
2
ΔPG

THξiΔPG ð37Þ

where ξi0 is the ith initial damping ratio. Damping ratio
describes the system stability and is calculated by (18).
The first and second-order sensitivities of damping
ratio are derived by (27), (28) and (33) considering
i ∈ SL, (k, j) ∈ SG as:

K ξi ¼
∂Δξ i
∂ΔPGj

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αi2 þ βi

2
q −βi

2

αi2 þ βi
2

∂Δα
∂ΔPGj

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αi2 þ βi

2
q αiβi

αi2 þ βi
2

∂Δβi
∂ΔPGj

ð38Þ

Hξi ¼
∂2Δξ i

∂ΔPGj∂ΔPGj
¼ ∂2Δξi

∂ΔPGj∂ΔPGj
1ð Þ þ ∂2Δξ i

∂ΔPGj∂ΔPGj
2ð Þ

ð39Þ

∂2Δξ
∂ΔPGk∂ΔPGj

1ð Þ ¼
−2βi

� ∂Δβi
∂ΔPGj

� ∂Δαi
∂ΔPGk

−β2�
∂2Δαi

∂ΔPGk∂ΔPGj

αi2 þ βi
2� �3

� αi
2 þ βi

2� �3=2
−
−βi

2� ∂Δαi
∂ΔPGk

� 3
2

αi2 þ βi
2� �1=2

αi2 þ βi
2� �3

�
2αi

∂Δαi
∂ΔPGj

þ 2βi
∂Δβi
∂ΔPGj

� �

αi2 þ βi
2� �3

ð40Þ

Table 2 The 9-bus system unstable state

System state Eigenvalue Damping ratio Oscillation frequency

Modal 1 −0.1515 ± j8.6712 0.0175 1.380057328 Hz

Table 1 The 9-bus system initial operation condition

Initial state Generator 1 Generator 2 Generator 3

Active power (MW) 0.7164 1.63 0.85
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∂2Δξi
∂ΔPGk∂ΔPGj

2ð Þ ¼
∂Δαi
∂ΔPGj

�
βi

� ∂Δαi
∂ΔPGk

þ α�
∂Δβi
∂ΔPGj

� ∂Δβii
∂ΔPGk

αi2 þ βi
2� �3=2

þ
αiβi

∂i2Δβi
∂ΔPGk∂ΔPGj

αi2 þ βi
2� �3=2 −

αiβi
∂Δβi
∂ΔPGk

� 3
2

αi
2 þ βi

2� �1=2
αi2 þ βi

2� �3

�
2αi

∂Δαi
∂ΔPGj

þ 2βi
∂Δβi
∂ΔPGj

� �

αi2 þ βi
2� �3

ð41Þ
To utilize (39), the expression of the Hessian matrix

Hξi is:

Hξi ¼
∂2ξ i
∂PG1

2 …
∂2ξ i

∂PGj∂PG1:… :… :…
∂2ξ i

∂PG1∂PGj
…

∂2ξ i
∂PGj

2

2
6664

3
7775 ð42Þ

The Hξi and Kξi are deduced by the sensitivity of state
matrix As and the initial eigenfunction. The sensitivity of
state matrix As is deduced by the change of state matrix
ΔA and perturbation variable ΔPG. Because system sta-
bility is estimated by the state matrix A0, the initial
eigenfunction is known.
The existing approach [10] contains heavy eigenvalue

computation used in the QR method, and thus, the com-
putation speed of QR method increases with the size of
state matrix. The QR algorithm is an eigenvalue algo-
rithm: that is, a procedure to calculate the eigenvalues
and eigenvectors of a matrix. The basic idea is to per-
form QR decomposition, writing the matrix as a product
of an orthogonal matrix and an upper triangular matrix,
multiply the factors in the reverse order, and iterate. The
sensitivity matrices As are obtained through the perturb-
ation variable and the change of state matrix ΔA in the
proposed method. The computational process of Hξi and
Kξi only contains simple multiplications and divisions,
and thus simplifies the calculation procedure. Compared

with the existing methods [12, 13, 15], burdensome devi-
ation calculations of damping ratio are avoided in the
presented method, and the calculation steps are direct
and explicit. Thus, the method has higher efficiency for
high order state matrix calculation.
In order to obtain the eigenvalue sensitivities in (17),

(25), (32), ΔA needs to be calculated by A0 and A, while
system voltage obtained by active power perturbation can
constitute A by (13) in perturbation process. In process of
active power perturbation, node voltage is obtained by
time-consuming power flow calculations, whereas the
system voltage is calculated by power sensitivity so as to
avoid repeated power flow calculations.

3.2 The power sensitivity application
The system voltage can describe the system state and
the state matrix is established by the system state. The
voltage can be calculated by power sensitivity so that the
iteration time is saved in power flow calculation.
Ja is the Jacobian matrix in the Newton-Raphson method

[29, 30] and the derivatives of voltage can be derived by the
Jacobian matrix Ja from (5). The derivatives of the voltage
amplitude and phase angle can be written as:

∂ΔV
∂ΔP
∂Δθ
∂ΔP

2
64

3
75 ¼ Ja−1

∂ΔS
∂ΔP

ð43Þ

V 0 ¼ V þ ∂ΔV
∂ΔP

ΔP ð44Þ

θ0 ¼ θ þ ∂Δθ
∂ΔP

ΔP ð45Þ

where ∂ΔV/∂ΔP and ∂Δθ/∂ΔP are the voltage amplitude
sensitivity and phase angle sensitivity, respectively. Δθ
and ΔV are the changes of system voltage amplitude and
phase angle, respectively. ΔS and ΔP are the respective
power changes in the system and generator, and ∂ΔS/
∂ΔP = [0, ....0, 1, 0, ...0]T.
Utilizing the voltage sensitivities in (44) and (45), new

state matrix A can be obtained by (13). Then, ΔA

Table 6 The 39-bus system unstable state

State Eigenvalue Damping ratio Frequency (Hz)

Modal 1 −0.1932 ± j6.8722 0.0281 1.0938

Modal 2 −0.1742 + j6.7736 0.0257 1.0738

Modal 3 −0.0143 ± j0.9386 0.0153 0.1494

Table 5 Generator actual active adjustment

Damping
threshold

1st-Oder
power
adjustment

2nd-Oder
power
adjustment

1st-Oder
minimum
damping ratio

2nd-Oder
minimum
damping ratio

0.03 0.49 MW 0.444 MW 0.034 0.0330

Table 4 Test results of NES-SSSC-OPF and MPT-OS

Method Minimum damping ratio Computation time

NES-SSSC-OPF 0.0347 0.0233 s

MPT-OS 0.0330 0.0182 s

Table 3 Adjustment results based MPT (ξr=0.032)
Sensitivity Eigenvalue Oscillation

frequency
Damping
ratio

1st-order
sensitivity

−0.320 ± j9.199 1.4641 Hz 0.0348

2nd-order
sensitivity

−0.304 ± j9.201 1.4644 Hz 0.0330
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required in the above section can be calculated by A0

and A in (16). The method avoids iterative computation
of power flow, which greatly reduce required calculation.

4 Results and discussion
Following examples are built on the MATLAB platform.
The WSCC 3-machine 9-bus, New England 10-machine
39-bus and the China 124-machine 634-bus systems

are used for illustrating the proposed technique. The
convergence precision is 10− 4 and damping ratio limit
ξ is 0.03.

4.1 The 9-bus 3-machine system
In modeling the system, the generator model is a
6th-order model, the excitation model is a self-shunt
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Fig. 3 Rotor frequency deviations after improving system stability: a 1-st order sensitivity MPT, b 2nd-order sensitivity MPT. The
Figure show that rotor frequency deviations after the system is disturbed by disturbance of 10% power load. System stability has
been improved by two kinds of re-dispatch
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Fig. 2 Rotor frequency oscillation deviations. The Figure shows the deviations of rotor frequency oscillation in initial system, after
the system is disturbed by disturbance of 10% power load
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static model and the load is modelled as constant resis-
tors. Through the small-signal stability analysis, Tables 1
and 2 show the initial operation conditions.
The oscillation frequencies of multiple modes are in

the range of 0–2.4 Hz in the original system with only
one damping ratio state being less than 0.03 at 0.0175.
Thus, the system is prone to low frequency oscillation
after disturbance.
The above system stability is improved by the pro-

posed methodology. Tables 3, 4, and 5 show the optimal
results (ξ= 0.03). The index ξerr is to evaluate the advan-
tages of the 2nd-order damping, and is defined as the
relative error of damping as:

ξerr ¼ ξt−ξrj j=ξt ð46Þ

where ξt is the minimum true value of damping after
system calibration, and ξr is the result of correction
strategy.
As can be seen from Table 3, the minimum damping

ratio is 0.033, which is greater than ξlimit of 0.03. The
system can suppress oscillation in a short time after sta-
bility correction. For (46), the relative error is 3.125%
and the numerical error is 0.001 in minimum damping
ratio, when considering the Hessian matrix of damping
ratio in the model. However, the corresponding relative
error is 6.25% and the numerical error is 0.002 when
considering the gradient matrix of damping ratio. Table 4
shows the test results of NES-SSSC-OPF and MPT-OS,
indicating that MPT-OS is faster than NES-SSSC-OPF
in computation time.
Table 5 shows the relationship between the damping

ratio and the active power adjustment. The increase in
damping ratio will increase the generator active output
adjustment. The active power adjustment of the
1st-order sensitivity is higher than that of the 2nd-order
sensitivity. This is due to the control strategy only con-
sidering the damping ratio gradient matrix, which has
lower accuracy than the Hessian matrix. Similarly, the

1st-order relative error is always bigger than that of the
2nd-order in minimum damping ratio.

4.2 The 39-bus 10-machine system
In the system model, the generators also adopt the
6th-order model, the excitation system is a fast-static ex-
citation model and the constant resistance model is also
used.
From small-signal stability analysis, the damping ratios

below 0.03 contain 0.0281, 0.0257 and 0.0153 as shown
in Table 6.
The system may become unstable due to insufficient

damping. Generators have the ability to provide additional
measure to the system to maintain the small-signal stabil-
ity. The 39-bus system is adjusted by NES-SSSC-OPF and
MPT-OS respectively, and Tables 7, 8, 9, 10 and 11 de-
scribes the adjustment results.
The 1st-order ξerr is 6.7% and the 2nd-order ξerr is 0%

according to (46), and active power adjustment of the
2nd-order sensitivity is smaller than that of the 1st-order
one. Comparing the two methods, the NES-SSSC-OPF is
more time consuming than the MPT-OS shown in
Table 9. The eigenfunction problem is solved by QR al-
gorithm with significant computation.
In Fig. 2, the rotor frequencies fluctuate severely at

10s, and its maximum frequency deviation is 0.1884 Hz.
This is due to the small damping ratio of the initial
system and thus the system cannot quickly recover to
the initial state. By contrast, Fig. 3 shows the rotor fre-
quency deviations after a 10% load disturbance. System

Table 10 Adjustment of active power (1st-order sensitivity)

Number Initial state The proposed strategy Adjustment

G1(MW) 2.5 2.9729 0.4729

G2(MW) 5.7323 2.1407 3.5916

G3(MW) 6.5 2 4.5

G4(MW) 6.32 8.0377 1.7177

G5(MW) 5.08 7.4301 2.3501

G6(MW) 6.5 7.4301 0.9301

G7(MW) 5.6 7.3428 1.7428

G8(MW) 5.4 5.8269 0.4269

G9(MW) 8.3 8.9056 0.6056

G10(MW) 10 11.3054 1.3054

Total (MW) 61.9323 63.3922 17.6431

Table 9 Test Results of NES-SSSC-OPF and MPT-OS (ξr=0.030)
Method Minimum damping ratio Computation time

NES-SSSC-OPF 0.033 0.2324 s

MPT-OS 0.030 0.1481s

Table 8 Adjustment results based MPT (2nd-order sensitivity)

State Eigenvalue Damping ratio Frequency (Hz)

Modal 1 −0.1594 ± j5.3150 0.03 0.8459 Hz

Modal 2 −0.1954 ± j5.8811 0.0332 0.936 Hz

Modal 3 −0.2772 ± j8.1952 0.0338 1.2052 Hz

Table 7 Adjustment results based MPT (1st-order sensitivity)

State Eigenvalue Damping ratio Frequency (Hz)

Modal 1 −0.1946 ± j6.0854 0.032 1.0322

Modal 2 −0.1794 ± j5.3150 0.033 1.18156

Modal 3 −0.1972 ± j5.6199 0.0351 0.8944
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stability has been improved by the two re-dispatch plans,
one has the 1st-order damping sensitivity and the other
2nd-order damping sensitivity. At 20s, rotor frequency
deviation with the 1st-order damping sensitivity is
smaller than that with the 2nd-order damping sensitiv-
ity. Compared with Fig. 2, the fluctuation of rotor fre-
quency is smaller in Fig. 3. The maximum frequency
deviation is 0.0328 Hz in Fig. 3a compared to 0.0358 Hz
in Fig. 3b. The damping ratio of the 1st-order sensitivity
is higher than that of the 2nd-order sensitivity, resulting
in reduced rotor frequency deviation of the 1st-order
sensitivity compared to that of the 2nd-order sensitivity.
From Tables 7, 8, 10 and 11, the active power adjust-

ment of generators and damping ratio variable Δξ
gradually decline with the increase of the order of sen-
sitivity. The main reason for this is that high order
sensitivity allows more accurate control of damping
ratio.
From Tables 10 and 11, it is seen that the active power

adjustment results satisfy the small-signal stability con-
straints by MPT-OS. In addition, the adjustment results
with the 2nd-order sensitivity is close to actual adjust-
ment results in the control model, while damping ratio
of the 1st-order sensitivity is higher than that of the
2nd-order sensitivity. This means that, the system can
provide more damping ratio, its stability is superior to

the original state, and it can suppress rotor frequency
fluctuation in a shorter time.

4.3 The 634-bus 124-machine system
The actual power grid in China is taken as an example,
which has 634 nodes, 532 lines, 124 generators, 190
reactive power compensation points and 879 trans-
formers. In the modelled system, the generators use
the 6th-order model, the load is again modelled as
constant load and the excitation model is the
fast-static excitation.
The initial operating condition in Table 12 shows un-

stable modes with damping ratio less than the threshold
of 0.03. Thus, if the system is subject to small disturb-
ance, system is prone to oscillation.
With the optimal model in Section 2, the stability of

the system is improved by the output power of generat-
ing units.
Comparing Tables 4, 9 and 13, it can be seen that

MPT-OS is faster than NES-SSSC-OPF in computation
time while increasing the system scale leads to increased
difference of the total CPU time between the two. It can
be concluded that MPT-OS has higher efficiency for
high order state matrix calculation than NES-SSSC-OPF.
After system damping ratio improvement, ξr is 0.034.

As can be seen from Table 14, the minimum damping
ratio is 0.0372 when the optimal strategy considers the
1st-order sensitivity. However, the minimum damping
ratio is 0.0350 when the 2nd-order sensitivity is consid-
ered. From (46), ξerr is 8.6% with the 1st-order sensitivity
and is 2.8% with the 2nd-order sensitivity. The active
power adjustment with 2nd-order sensitivity is smaller
than that with the 1st-order sensitivity. This is because
high order sensitivity can allow a more accurate control
of damping ratio. It can be seen from the above table
that, compared to the 1st-order sensitivity, the
2nd-order sensitivity more accurately characterizes
damping ratio state, leading to better precision.

Table 12 634-bus system operation condition

State Eigenvalue Damping Frequency

Modal 1 −0.6028 + j14.5467 0.0414 2.31513608 Hz

Modal 2 −0.5486 + j14.4215 0.0381 2.295081967 Hz

Modal 3 −0.5134 + j13.6761 0.0375 2.176667197 Hz

Modal 4 2.1815 + j0.0000 −1 0 Hz

Modal 5 12.6029 + j0.0000i −1 0 Hz

…… ……. ……. …….

Table 14 Adjustment results based MPT (ξr=0.034)
Sensitivity Eigenvalue Minimum

damping ratio
Active
adjustment

1st-order −0.5400 + j14.4385 0.0372 0.5173 MW

2nd-order −0.0069 + j0.1337 0.0350 0.5064 MW

Table 13 Test results of Chinese 634-bus system

Method Min damping
ratio

Computation time

NES-SSSC-OPF 0.0372 61.5861 s

MPT-OS 0.0350 21.2479 s

Table 11 Adjustment of active power (2nd-order sensitivity)

Number Initial state The proposed strategy Adjustment

G1(MW) 2.5 3.1166 0.6166

G2(MW) 5.7323 7.6808 1.9485

G3(MW) 6.5 2.1827 4.3173

G4(MW) 6.32 7.0752 0.7552

G5(MW) 5.08 5.691 0.611

G6(MW) 6.5 6.978 0.478

G7(MW) 5.6 6.5624 0.9624

G8(MW) 5.4 6.2396 0.8396

G9(MW) 8.3 5.696 2.604

G10(MW) 10 11.1497 1.1497

Total (MW) 61.9323 62.372 14.2823
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5 Conclusion
This paper has showed that optimization strategy with
constraints for small-signal stability can improve system
stability by using methods from Matrix Perturbation
Theory (MPT). First, a small signal analysis is used to
identify the degree of influence of unstable modes on
the system. The desired sensitivity matrix is then calcu-
lated through MPT, which can describe damping ratio
constraints. In the optimized corrective control, a series
of comprehensive restrictions are proposed to enhance
the system damping ratio while meeting the normal op-
eration requirements.
The strategy presented in this paper does not re-

quire burdensome deviation calculation to describe
the 2nd-order damping ratio sensitivity. The desired
sensitivity can be obtained by perturbation variable
and the change of the state matrix. The solving steps
are direct and explicit, and the calculation of high
order sensitivity matrix is simplified. Furthermore, the
active power adjustment with the 1st-order sensitivity
is higher than that with the 2nd-order sensitivity in
the optimization strategy. Since the accuracy of the
gradient matrix is lower than that of the Hessian
matrix, high order sensitivity can gain higher accuracy
in controlling damping ratio and active power adjust-
ment. Compared to other methods, the proposed
MPT based optimal strategy can avoid the deviation
calculation and reduce computation time, while ensur-
ing calculation accuracy.
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