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Abstract

The recent development of phasor measurement technique opens the way for real-time post-disturbance transient
stability assessment (TSA). Following a disturbance, since the transient instability can occur very fast, there is an
urgent need for fast TSA with sufficient accuracy. This paper first identifies the tradeoff relationship between the
accuracy and speed in post-disturbance TSA, and then proposes an optimal self-adaptive TSA method to optimally
balance such tradeoff. It uses ensemble learning and credible decision-making rule to progressively predict the
post-disturbance transient stability status, and models a multi-objective optimization problem to search for the
optimal balance between TSA accuracy and speed. With such optimally balanced TSA performance, the TSA
decision can be made as fast as possible while maintaining an acceptable level of accuracy. The proposed method
is tested on New England 10-machine 39-bus system, and the simulation results verify its high efficacy.
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Transient stability assessment

1 Introduction

Transient stability refers to the ability of the power sys-
tem to maintain synchronism after being subjected to a
severe disturbance, such as a short circuit on a transmis-
sion line [1]. Loss of transient stability can lead to cata-
strophic events, such as cascading failure and/or
wide-spread blackout. Therefore, maintaining transient
stability is an essential requirement in power system
operation.

Post-disturbance transient stability assessment (TSA) is
of great importance to avoid the instability propagation
following a disturbance. It predicts the system stability sta-
tus under an ongoing disturbance, and its assessment de-
cision is utilized to trigger emergency control actions such
as generator tripping and/or load shedding. The trad-
itional TSA method is time-domain (T-D) simulation,
which iteratively solves a set of high-dimensional
non-linear differential algebraic equations [2]. The T-D
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simulation is computationally burdensome and requires
accurate information of system modelling.

With the wide deployment of phasor measurement
units (PMU), power system operating condition can be
monitored in real-time, which opens the way for
real-time post-disturbance TSA. Based on the real-time
system data, a number of direct methods have been pro-
posed to speed up the T-D simulation for
post-disturbance TSA [3]. Some examples are piecewise
constant-current load equivalent [4], emergency single
machine equivalent [5], and post-disturbance trajectory
analysis [6]. Although these methods reduce the com-
plexity of the TSA problem, they can only provide con-
servative and approximate assessment result, and their
decision-making speed is still insufficient to timely trig-
ger emergency control actions.

To achieve fast real-time TSA, intelligent system
IS-based methods have been identified as a promising
solution [7-16]. In IS-based TSA, the conventional T-D
simulation data constructs the database to train the in-
telligent models at offline stage, and then the trained
models can perform fast online TSA with the minimal
computation effort. In the literature, the intelligent
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models, such as decision tree (DT) [10-12], artificial
neural network (ANN) [13] and support vector machine
(SVM) [14], have demonstrated their strengths in power
system stability assessment.

In most of existing methods, the TSA decision tends
to be made at a fixed time following the disturbance. A
problem of such TSA implementation is it requires long
response time to allow for sufficient TSA accuracy,
which can lead to late and ineffective emergency control
actions. To improve the TSA response speed, a
self-adaptive TSA scheme has been proposed in [17, 18].
It monitors the credibility of the IS output over a pro-
gressively increasing observation window, and delivers
the TSA decision once a credible result is obtained. In
doing so, the TSA response time can be shortened with-
out the impairment on TSA accuracy. Moreover, it is
implied that, under the self-adaptive TSA scheme, the
overall TSA accuracy and speed are sensitive to the
values of a number of user-defined parameters in-
volved in the credibility monitoring process. However,
in [17, 18], those parameters are manually tuned,
which is time consuming and cannot ensure the opti-
mal TSA performance.

Considering above inadequacies, the contribution of
this paper is to first identify the tradeoff relationship be-
tween TSA accuracy and speed, and then propose an op-
timal self-adaptive method that is able to optimally
balance the post-disturbance TSA accuracy and speed.
In the proposed method, a randomized learning algo-
rithm, extreme learning machine, is adopted owing to its
stochastic nature and fast learning capability [15]. Fol-
lowing a disturbance, the transient stability status of the
system is progressively predicted by ELM ensemble
models, and the credibility of the prediction results is
identified through a credible decision-making rule.
Moreover, a multi-objective optimization problem
(MOP) is modelled to optimally balance the tradeoff be-
tween TSA accuracy and speed. With such optimally
balanced TSA performance, the TSA decision can be de-
livered as fast as possible while maintaining an accept-
able level of accuracy, so the emergency control actions
can be timely and accurately triggered to avoid further
blackout events.

The proposed method has been tested on New Eng-
land 39-bus system, and the simulation results demon-
strate accurate and fast post-disturbance TSA.

2 Problem identification

With the increasing deployment of PMUs in modern
power systems, post-disturbance real-time TSA is of
great significance to avoid blackout events. For a suc-
cessful TSA scheme, the assessment decision should be
sufficient accurate and delivered as fast as possible fol-
lowing the disturbance. However, there is an intractable
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tradeoff problem between TSA accuracy and speed,
which will be raised in this section.

2.1 IS-based post-disturbance TSA

Transient stability refers to the system’s ability to main-
tain its synchronism subject to a disturbance. It depends
on both the initial operating state of the system and the
severity of the disturbance [1]. Instability is usually in
the form of aperiodic angular separation due to insuffi-
cient synchronizing torque. The timeframe for
post-disturbance transient stability study is usually 3 to
5 s after the disturbance [3].

With the development of PMU, post-disturbance TSA
can be performed in real-time and in a response-based
manner [19]. Based on the massive amount of data from
PMUs, IS-based methods have been identified as power-
ful tools for real-time TSA given the high complexity of
the system and the difficulties in modelling the physics
behind the complex system dynamics. Compared to
traditional TSA methods, such as T-D simulation and
direct methods [4-6], the advantages of IS-based
methods include their real-time computational speed,
less data requirement, strong generalization ability, and
versatility [20].

In IS-based methods, the intelligent models need to be
trained at the offline stage in advance. The training data
is either obtained from historical operating record or
generated using T-D simulations on different contingen-
cies. The input and output of an intelligent system for
post-disturbance TSA are shown in Fig. 1. The inputs to
the IS are the post-disturbance time series of different
electrical variables, such as bus voltages, line current,
rotor angle of synchronous machines, etc. Based on such
multivariate time series input, the IS should be able to
predict transient stability status as the TSA result.

Time series system .
' Predictors

dynamic data

Xy(Th) ———
Time series of Xy(Th) ———

variables #1

X(T) ——

Xo(T)) ———»
Time series of Xo(T)) ———>
variables #2 : : Stability status
Xy(I,) ——| Intelligent [ L, v

System

X(T)) ————>|
Time series of X(T) ———|
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XlTy) ——>

Fig. 1 lllustration of an IS for Post-Disturbance TSA
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2.2 The self-adaptive TSA scheme

In the literature, most existing TSA methods utilize a
fixed-length observation window and the response time is
constant. However, this static time response can be less re-
liable to cope with fast transient instabilities situation.
Moreover, different system models may require substan-
tially different lengths of observation windows to obtain
reliable assessment results. In [17, 21, 22], a self-adaptive
TSA scheme is proposed and adopted to obtain a reliable
assessment result as fast as possible. In doing so, emer-
gency control actions can be activated at an early time to
timely avoid further instability propagation.

The structure of the self-adaptive TSA scheme is
shown in Fig. 2. There are a series of intelligent models,
and each of them operates at a different decision cycle
T;. Moreover, by using the credibility check, the stability
status of the system is predicted progressively after the
fault clearance: at each decision cycle 7}, if the output
from an intelligent model is identified as credible, the
TSA result will be directly obtained; otherwise, the as-
sessment will continue at the decision cycle T}, ;.

In above self-adaptive process, a maximum allowable
decision-making time should be defined in order to keep
the whole system more reliable and activate the emer-
gency control timely. Compared with the existing
fixed-time decision-making models, the self-adaptive TSA
scheme can deliver the TSA result as fast as possible with-
out impairing the assessment accuracy. In this way, the
unnecessary waiting time can be eliminated, hence more
time is spared to make emergency control decisions.

2.3 The tradeoff problem

In credibility check, the credible criterion is generally
defined by a number of credible decision parameters,
and a limit of the exiting methods [17, 21, 22] is that
those parameters are usually manually set by experience.

Fault Duration Post-Fault
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The parameters selection in this way would have a bad
impact on the final accuracy, efficiency, and robustness.

Under the self-adaptive TSA scheme, the final TSA
performance is sensitive to the value of those credible
decision parameters. If the credible criterion defined by
those parameters is too loose, most of the outputs from
intelligent models will be regarded as credible, then the
TSA response speed will be faster. However, due to the
loose credible criterion, the credible intelligent model
outputs come with lower accuracy, which can lead to
unacceptably low TSA accuracy. On the other hand, if
the credible criterion is too strict, although the TSA ac-
curacy can be extremely high, only a very small portion
of intelligent model outputs are identified as credible at
each decision cycle, which leads to slower TSA response.
Obviously, there is a tradeoff relationship between TSA
accuracy and speed, which is the focus of this paper.

In general, with longer response time, the IS can take
advantage of more system dynamic data, so the TSA re-
sults tend to be more accurate. However, TSA instability
usually occurs very fast, if the response time is too long,
the emergency control of the entire power system cannot
be started in time, so that system instability cannot be
avoided. To tackle such tradeoff problem, this paper pro-
poses an optimal self-adaptive TSA method which can op-
timally balance the tradeoff between TSA accuracy and
speed, so the overall TSA performance is optimized.

3 Methods

3.1 Proposed method

In the proposed method, ELM-based ensemble model is
used as the intelligent model to provide diversified stabil-
ity prediction outputs, and the credible decision-making
rule in [9] is employed as the credibility check mechanism.
This section introduces the existing methodologies used
in the proposed method.

|
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Time Window | Time Window Decision-Making Time
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Fig. 2 Structure of the Self-Adaptive TSA Scheme
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3.2 Extreme learning machine
ELM is proposed by Huang [15] and receives substantial
attention from academic research and practical applica-
tion. ELM belongs to single-hidden layer feedforward
networks (SLEN), and its structure is shown in Fig. 3.
ELM includes three layers: input layer, hidden layer, and
output layer.

For a standard ELM with N hidden layer nodes, the
output function can be mathematically modelled as fol-
lows [15]:

where g represents the activation function, w; eR" is the
input weight vector connecting all input layer nodes
with the ith hidden layer node, B,€R" is the output
weight vector connecting the it# hidden layer node with
the output layer nodes and b; represents the bias at ith
hidden layer node, w;x; denotes the inner product of w;
and x;.

ELM is completely different from the traditional itera-
tive learning based ANN because the input weights and
deviations of ELM are randomly selected, so it can skip
the traditional iterative training process, such as back
propagation. After that, the output weight 5 is obtained
through the analysis of the direct matrix calculation.
When the number of hidden nodes is less than the num-
ber of training instances, it can be transformed as a lin-
ear system for fixed w; and b;, and output weight vector
B* can be estimated by using the minimal norm least
square method as follows:

B*=H'T (2)

where

A\

Input layer

Fig. 3 The Structure of an ELM

Hidden layer

Output layer
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g({ﬁ)
H= :
g(xn)

g(Wl'X1+b1) g(W&Xl-f—bN)

g(Wl 'XN+b1) g(waN+b1§[)

(3)

In Eq. (2)-(3), H is called the hidden layer output
matrix, and H' represents the Moor-Penrose generalized
inverse of H, H = HY(HH™) " ..

Compared to the traditional learning algorithms, ELM
shows much faster learning speed and only requires
much less computation memory for either categorical
classification or numeric prediction. Other significant
merits of ELM are its efficient tuning mechanism, excel-
lent generalization ability, universal approximation abil-
ity, and less parameter adjustment [15]. ELM avoids
issues, such as learning rate setting, local minima, and
stopping criteria, which are commonly encountered on
the traditional learning algorithms. Meanwhile, ELM re-
tains high computation accuracy on many benchmark
problems [9, 15, 16].

3.3 ELM ensemble learning

Ensemble learning is the technique of combining mul-
tiple learning units to solve the same classification or
regression problem. In the literature, ensemble learning
has been widely used in power system dynamic security
assessment [9, 10, 12, 16, 23]. For ensemble learning, a
set of single learning units are individually trained and
combined together to make the final decision. Under
such paradigm, the single learning units in the ensem-
ble can compensate each other. This method creates
the learning diversity among single learning units, so
their aggregated output tends to be more accurate and
more robust.

Encouraged by the previous results, this paper uses
ELM ensemble model to make stability status prediction.
Since ELM adopts random input weights and biases, its
training speed is significantly improved, so the increased
training burden of ensemble training can be greatly alle-
viated. Moreover, in ensemble training, each single ELM
not only selects random input weights and bias, but also
randomly selects training data, hidden node number and
activation function. By this way, the ELM ensemble gen-
erates more diversified outputs for better overall predic-
tion performance. For each single ELM in the proposed
ELM ensemble model, the specific training process is as
follow:

Single Learning Unit Training

Given a database of S x F size to train E single ELMs,
where § is the number of instances and F is the number
of input features.
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Fori=1to E:

1) Randomly sample s € [1, S] instances in the
database.

2) Randomly select f € [1, F] features in the feature set.
3) Randomly assign an effective activation function /g
and the number of hidden layer nodes from the

optimal range [fyn Marax] (Subject to a pre-tuning
procedure).

4) Train the ELM by using the selected instances,
features, activation function, and number of hidden
layer nodes.

End

The performance of ELM ensemble model on post-fault
transient stability assessment has been tested in [17], and
the final results verify its excellence in accuracy, robust-
ness, and reliability compared to a single ELM.

3.4 Credible decision-making rule

In practical classification, some instances may be very
close to the boundary decision of the regression output.
It has been shown that the output value of most of the
wrong classifications is very close to the mean of the
class labels [16]. On the other hand, because of the pre-
diction error, it is necessary to define the specific thresh-
old as the decision boundary for classification [16].
Obviously, the deviation between the actual output and
the predefined class label can be obtained from the pre-
diction error. For single classification, each individual
ELM classifier exports outputs about whether the classi-
fication is credible or not. For a credible classification, it
is comprised of classified stable and unstable.

Based on above cases, the credible decision-making
rule proposed in [9] is employed to check the credibility
of ELM ensemble output. Suppose the ensemble model
includes totally E single ELMs, then we define that the
predicted outputs of single ELMs are divided into three
different classes in order to improve classification reli-
ability. In this paper, for post-disturbance TSA, the sta-
bility class labels are represented by binary numeric
values, 1 (stable) and — 1 (unstable), then the specific
credible classification rule of every ELM is as follow:

y,€[lbs, ubs]=>y; = +1 (Credible-stable)
I y,€[lby, ub,]=>y;, = -1 (Credible-unstable)
y,€(=o0, by, )or(uby, Ibs)or(ubg, +o)=y, = 0
(Incredible)

(4)

where y; represents the predicted output of each ELM in
the ensemble, 0<lb,<1, uby>1, lb,<~-1, —1<ub,<0
are the boundaries to respectively distinguish the stable,
unstable, and incredible y;.
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Due to the lack of knowledge of the available train-
ing data, the fitting distribution may not always be
realistic. This can be the core reason accounting for
the prediction error on unknown instances. The esti-
mation of the credibility of the ensemble outputs is
based on the portion of single ELM outputs that are
recognized incredible using (4). A larger portion of
incredible ELM outputs generally means the ensemble
output is less reliable.

Credible Decision-Making Rule

Given totally E single ELMs, which can totally obtain s “0”
outputs, u “+ 1” outputs and v “-1” outputs (s + u + v =E).

If s>R>Y =0 (Incredible ensemble decision)

u>v=>Y =41
u<vayY=-1

(Stable ensemble decision)
(Unstable ensemble decision)

Else If {

End

(5)

In (5), Y is the ultimate classification result; R is the
threshold that determines whether Y is a credible. In the
credible decision-making rule, the boundaries [/b,, ub,,
by, uby), the quantity of ELM m, and the threshold R are
the credible decision parameters that defines the cred-
ible criterion of the ELM ensemble output.

3.5 Accuracy-speed tradeoff optimization

As earlier mentioned, there is tradeoff relationship be-
tween TSA accuracy and speed, and the overall TSA
performance under a self-adaptive scheme is sensitive to
the value of the credible decision parameters. In this sec-
tion, the tradeoff relationship between TSA accuracy
and speed is modelled in a MOP, based on which the
credible decision parameters can be optimized to achieve
the best TSA performance.

3.6 TSA performance metrics

Before optimizing the TSA performance, appropriate
metrics should be defined to quantify the TSA per-
formance. Under the self-adaptive TSA scheme, the
TSA performance is evaluated in a statistical way.
TSA accuracy and speed are the two priority terms
to describe post-disturbance TSA performance. The
TSA accuracy is evaluated using the average TSA ac-
curacy (ATA) metrics while the TSA speed is evalu-
ated using the average response time (ART) metrics.
They are defined as follows [17]:

i[T, X C(Tl)]
ART == (6)
(T:)

Il
—
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1 IS[C(T)-M(T
ATA:%-;{%] (7)

where m represents the total number of decision cycles;
T; represents the ith decision cycle; C(T;) and C(T) are
the total number of classified instances ‘at’ and ‘until’ the
current decision cycle, respectively; M(T) is the total
number of misclassified instances at the current decision
cycle.

The ART index refers to the average time spent to
complete TSA following a disturbance. Shorter ART
means higher TSA speed. The ATA index computes the
overall TSA accuracy on a set of instances, which can
represent the accuracy of the proposed method.

3.7 The multi-objective optimization problem

Since there is trade-off between speed (ART) and accuracy
(ATA), achieving optimization on one side cannot be glo-
bal optimal. Thus, the optimization of the credible deci-
sion parameters can be formulated in a multi-objective
optimization problem as follow:

Maximize  p(x) = [-p1(x),p,(x)] = [-ART, ATA]
X = [Iby, uby, Ibg, ubg, R]

Ib, = (b, 162,16, ..., b ™)

ub, = (ubi,ubi,ubi, ...,ub,{"‘“)

Ibs = (b}, 162,163, ..., Ib] ™)

ub; = (ubsl,ubf,ubf, ...,ubsT‘““)

R= (R, R’ R, .. R"™)

b, < -1,-1 < ub, <0,0 <Ib! <1,ub; >1
0 < R" <200

S.t.

where the speed ART and accuracy ATA are the two ob-
jectives which are related to the credible decision param-
eters through p; and p, respectively. Under the
self-adaptive TSA scheme, the number of decision pa-
rameters depends on the maximum allowable
decision-making time T7,,,, By solving this specific
multi-objective optimization problem, decision makers
can obtain the corresponding solutions according to
their actual needs.

3.8 Pareto optimality

Compared with the single-objective optimization prob-
lem, when two or more objectives are equally important
in the optimization problem, the optimal solution is not
generally unique if there is trade-off between the objec-
tives. On the contrary, by providing a set of optimized
solutions, decision makers can choose one of the best
solutions according to their actual needs.

The tradeoff relationship can be defined by the Pareto
optimality theory. The set of all Pareto optimal solutions
is called the Pareto set, and the set of all Pareto optimal
target vectors is called the Pareto optimal frontier (POF)
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[24]. We can use POF to display an interpretable and re-
markable pattern showing the tradeoff between ART and
ATA.

3.9 Model design

Under self-adaptive TSA scheme, the credible criterion
defined for each decision cycle would determine the
overall speed and accuracy. This paper proposes an opti-
mal self-adaptive TSA method to optimize the credible
decision parameters at different decision cycle for the
best overall TSA performance. The proposed method is
illustrated in Fig. 4. It is implemented via offline train-
ing, performance optimization, and online assessment.
The offline training and the performance optimization
are preparation works at offline stage, and the online as-
sessment shows how the proposed method performs
post-disturbance TSA at online stage.

3.10 Offline training

Combining ELM ensemble model, credibility check, and
multi-objective optimization, the proposed method has
to be prepared at offline stage as shown in Fig. 4. Since
the multi-objective optimization is formulated based on
the reliable classification performance of ELM ensemble,
so the validation process is designed to derive the POF.
Owing to self-adaptive mechanism, all of the classifica-
tion boundaries, credible threshold at each time should
be integral optimization. Finally, the trained ELM en-
semble, the POF, and the Pareto set can form the reliable
ensemble model for online assessment.

3.11 Performance optimization

In performance optimization, the cross validation out-
puts construct an output set, based on which the MOP
is solved to search for the optimal TSA performance.
Genetic algorithm is used in this paper to solve the
MOP, and a POF is generated as the optimization result.
The Pareto points in POF should form an interpretable
and remarkable pattern showing the tradeoff between
TSA accuracy and speed. Since POF includes multiple
Pareto points with equal optimality, a compromise solu-
tion needs to be selected among them to represent the
best TSA performance. Such compromise solution is
generally decided based on the practical system’s oper-
ation need and the operator’s experience.

3.12 Online assessment

At online stage, the proposed method is triggered when
there is a physical fault occurring in the system. Follow-
ing the fault, the transient stability of the system is
assessed in a self-adaptive way based on the progres-
sively collected PMU measurement. A new decision
cycle starts every time a new PMU measurement is ob-
tained. The ELM ensemble model predicts the transient
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Fig. 4 The Optimal Self-Adaptive TSA Method

stability status at each decision cycle, and the optimal
credible decision parameters are used to check the cred-
ibility of the ensemble output. If incredible outputs are
obtained, the transient stability should be re-assessed at
the next decision cycle. Above process continues until a
credible TSA decision is obtained or the maximum
decision-making time is reached. The online assessment
procedure is shown in Fig. 4.

4 Results and discussion

4.1 Numerical test

The proposed method is tested on New England
10-machine 39-bus system (Fig. 5), which represents a
benchmark power system for stability analysis [21]. The
synchronous generator at bus 37 is replaced by a wind farm
of the same capacity to simulate the impact of renewable
energy sources. The simulation and computation in the test
is conducted on a 64-bit computer with an Intel Core i7
CPU working at 2.8-GHz and 16-GB RAM. T-D simula-
tion is performed by using commercial software PSS/E.

4.2 Database generation
To have a comprehensive database for post-disturbance
TSA, a variety of physical faults are simulated on a wide
range of operating scenarios to obtain the post-disturbance
system information.

In the test, 6000 operating scenarios are generated by
randomly varying the load demand and the generated

wind power at bus 37. The load demand at each load
bus varies between 0.8 and 1.2 of its rated values, and
the generated wind power at bus 37 varies between 0
and its capacity. Optimal power flow is run to calculate
the optimal operating point of each scenario.

For each generated operating scenario, three phase
faults with randomly selected fault location and fault
clearing time are applied. Considering the practical

37
- 25 26 AH—— 28-'r- 29
2 —l——27
|+ 38
|

- 17
39 ‘

-7
8 iﬂ @Vl éaz 634633 35

Fig. 5 New England 10-machine 39-bus system



Ren et al. Protection and Control of Modern Power Systems (2018) 3:19

situation, the fault clearing time is randomly selected be-
tween 0.1 and 0.3 s after the fault inception.

T-D simulation is performed to simulate the dynamics
of the system, where the simulation time is 5 s and the
simulation time step is 0.02 s. The voltage and
rotor-angle trajectories of synchronous generators are
recorded. The generator voltage trajectories are regarded
as the input to the intelligent models and the rotor an-
gles are utilized to calculate the transient stability index
(TSI) as follow:

360—|ASmax|

TSI = —— 1= max]
360 + |AGmax]

x 100 (8)

where Adp.x is the maximum angle deviation between
any two generators at any time point. The TSA status y
can be obtained by using TSI as follow:

-
)

As a consequence, the database consists of 4000 in-
stances, each with the post-disturbance generator volt-
age trajectories as input and the transient stability status
as output. The 4000 instances are then randomly divided
into two different sets, one serves as training set,
whereas the other as testing set. The training set occu-
pies 87.5% and the testing set occupies 12.5% of all the
instances.

(Stable) for TSI > 0

(Unstable) for TSI<0 t=12,0T

4.3 ELM ensemble training

Based on the simulation time step, each decision cycle
for the self-adaptive TSA scheme should be 0.02 s. The
maximum allowable decision-making time is set at 0.4 s
(i.e. Thax=20) to keep the whole system more reliable
and activate the emergency control timely. Since one
ELM ensemble model is trained for each decision cycle,
20 ELM ensemble models are needed to implement
self-adaptive TSA. To train each ELM ensemble model,
the following parameters need to be specified.

1) Total Number of ELMs in an Ensemble E: As verified
by the existing ensemble learning methods [22, 25], with
increasing number of single learning units, the overall
prediction error will gradually decrease but converge to
a limit. In our case, E is 200.

2) Activation Function and Optimal Hidden Node Range:
The number of hidden layer nodes and the choice of acti-
vation functions also need to be adjusted in the training
process of each single learning unit. For an activation
function, the ELM computation accuracy can only be
maximized within a specific hidden node range. In the
test, the Sigmoid and Sine functions are chosen as the
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candidate activation functions, and the optimal hidden
node range for those two functions is [150, 250].

3) Number of Training Instances: The quantity of in-
stances which are selected to train ELMs determines the
performance of ELM ensemble model. In the test, the
number of training instances for each single ELM is
chosen to be 3500.

4.4 Performance optimization result

In performance optimization, the multi-objective prob-
lem is solved by genetic algorithm and the correspond-
ing Pareto solutions are obtained. The POF in terms of
ART and ATA is shown in Fig. 6.

The POF is a reference to decide the compromise pa-
rameters for online application; meanwhile, it serves as a
benchmark for optimal post-disturbance TSA perform-
ance. Therefore, by utilizing any Pareto point on POE,
the online TSA performance (ART and ATA) could
closely achieve its validated optimal performance. Some
properties of the obtained POF are listed in Table 1.

From Fig. 6 and Table 1, the tradeoff relationship be-
tween TSA accuracy and speed can be clearly observed.
On the one hand, with all the ensemble outputs being
recognized as credible, the self-adaptive process will be
instantly completed at the 1st decision cycle (ie. ex-
tremely fast TSA speed), but the TSA accuracy is only
90.75%. On the other hand, while 100% TSA accuracy
(i.e. ATA) is achieved, the optimal ART is 8.367 cycles
(i.e. 0.16734 s).

Among the Pareto points, a compromise solution
needs to be selected to represent the optimal TSA
performance. In this paper, a practical requirement of
99% is assumed for ATA, which regulates the
post-disturbance TSA accuracy. Based on such require-
ment, the Pareto point listed in Table 2 is used as the
compromise solution because it satisfies the 99% ATA
requirement with the lowest ART.

In practice, the choice of the compromise solution is
not limited to above strategy. During online application,
system  operators should employ their own
decision-making strategy to select the best Pareto point,
and they are also able to adjust the choices depending
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Fig. 6 The POF obtained in Performance Optimization
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Table 1 POF solution results

Worst Case ATA
90.75%

No. of Pareto Solutions Worst Case ART
45 8.367 cycles (0.16734 s)

on the practical TSA requirement of the power system.
Therefore, the proposed model offers the system opera-
tors more flexibility in  manipulating the
post-disturbance TSA performance.

4.5 Online testing result

The proposed method is applied to the testing instances
to test its online TSA performance. Besides ART and
ATA, the TSA performance at each decision cycle also
needs to be investigated. The testing result is shown in
Table 3. The columns of the Table 3, from left to right,
are respectively the decision cycle, the number of
remaining instances to be assessed at each decision
cycle, the number of assessed instances at each decision
cycle, the assessment accuracy at each decision cycle
and the accumulated assessment accuracy up to each de-
cision cycle.

In Table 3, it can be observed that the accuracy at
most decision cycles are 100%, which means that the
TSA accuracy will not be degraded by the early assess-
ment of some instances. This result verifies that the pro-
posed method can improve the TSA speed while
maintaining the TSA accuracy. Moreover, compared to
the performance indicated by the selected Pareto point
in Table 2, the ATA in the testing result is slightly lower,
but the ART is significantly reduced, indicating much
faster TSA speed. This testing result further verifies the
tradeoff relationship between TSA accuracy and speed.

5 Conclusion

This paper focuses on improving post-disturbance TSA
performance using IS-based methods. It first identifies a
tradeoff problem between TSA accuracy and speed, and
then proposes an optimal self-adaptive TSA method to
optimally balance such tradeoff and thereby achieve the
best overall TSA performance. The proposed method
adopts ELM algorithm and ensemble learning tech-
niques to predict transient stability status at each deci-
sion cycle, and uses a credible decision-making rule to
identify the credibility of the ELM ensemble output. The
post-disturbance TSA is performed under a self-adaptive
scheme for gain fast assessment ability, so the emer-
gency control actions can be activated in time to prevent
the power system against catastrophic blackout. Under a

Table 2 Selected pareto point

Average Response Time (ART)
5.536 cycles (0.11072 s)

Average TSA Accuracy (ATA)
99.27%
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Table 3 Testing results
Decision  No. of Remained  No. of Assessed  Each Cycle Total
Cycles Instances Instances Accuracy Accuracy
1(002s) 500 164 99.39% 99.39%
20045 336 24 100% 99.47%
3(006s) 312 47 100% 99.57%
4(0085) 265 58 100% 99.66%
5(0.109) 207 11 100% 99.67%
6(0.125) 19 33 100% 99.70%
70145 163 7 71.43% 99.13%
8(0.165s) 156 12 91.67% 98.88%
9(0.18s) 144 0 N/A 98.88%
10(020s) 144 1 100% 98.88%
11(0022s) 143 10 90.00% 98.64%
12(0245) 133 0 N/A 98.64%
13(026s) 133 3 100% 98.65%
14(028's) 130 1 100% 98.65%
15(0.30s) 129 1 100% 98.66%
16(032s) 128 5 100% 9867%
17(0345) 123 0 N/A 98.67%
18(0365) 123 0 N/A 98.67%
19(038s) 123 3 100% 98.68%
20(040s) 120 3 100% 98.69%
ART 3.572 cycles (0.07144 s) ATA 99.01%

multi-objective optimization framework, the parameters
to define the credible decision-making rule are opti-
mized and the trade-off between TSA accuracy and
speed is also optimally balanced. Moreover, the proposed
method also enables system operators to empirically se-
lect their compromise TSA performance from the ob-
tained POF. The proposed TSA method has been tested
on New England 10-machine 39-bus system, and the
simulation results verifies the tradeoff relationship be-
tween TSA accuracy and speed and demonstrates high
TSA performance of the proposed method.
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