
ORIGINAL RESEARCH Open Access

Modeling and SOC estimation of lithium
iron phosphate battery considering
capacity loss
Junhui Li1*, Fengjie Gao2, Gangui Yan1, Tianyang Zhang1 and Jianlin Li3

Abstract

Modeling and state of charge (SOC) estimation of Lithium cells are crucial techniques of the lithium battery
management system. The modeling is extremely complicated as the operating status of lithium battery is
affected by temperature, current, cycle number, discharge depth and other factors. This paper studies the
modeling of lithium iron phosphate battery based on the Thevenin’s equivalent circuit and a method to
identify the open circuit voltage, resistance and capacitance in the model is proposed. To improve the accuracy of the
lithium battery model, a capacity estimation algorithm considering the capacity loss during the battery’s life cycle. In
addition, this paper solves the SOC estimation issue of the lithium battery caused by the uncertain noise using the
extended Kalman filtering (EKF) algorithm. A simulation model of actual lithium batteries is designed in Matlab/Simulink
and the simulation results verify the accuracy of the model under different operating modes.
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1 Introduction
Wind power generation has been developing rapidly in re-
cent years for being pollution-free and sustainable [1–4].
However, wind power curtailment has become a prominent
problem due to the constraints imposed by power dispatch
and wind power’s fluctuation and unpredictability. Energy
storage is an effective means to solve the wind power cur-
tailment problem as it can dynamically absorbs and releases
energy. It also realizes the temporal transition of power and
energy to effectively eliminate wind power curtailment
caused by the system’s poor peak regulation ability.
Electrochemical energy storage exemplified by lithium

battery has been applied in renewable power generation
for its high controllability, modularity, energy density
and conversion efficiency [5]. Multiple lithium battery
energy storage demonstration projects have been con-
ducted throughout China, including Zhangbei County in
Zhangjiakou of Hebei Province (14 MW/63WMh lith-
ium phosphate battery system), Baoqing energy storage
station in Shenzhen (4 MW/16MWh lithium iron

phosphate battery system) etc. To promote the develop-
ment and application of lithium battery technology, the
main task is to develop safe, low-cost and long-life lith-
ium ion battery energy storages [6].
Researches on the modeling, control, and capacity

allocation of lithium battery energy storage systems have
been reported. In terms of energy storage modeling, a
battery is composed of positive electrode, negative elec-
trode and electrolyte. Its charge and discharge are elec-
trochemical process and its voltage and current as well
as the resistance of the active materials inside are
affected by polarization, temperature and other factors
[7–10]. The lithium battery will age and lose capacity
due to on-going charge and discharge in its life cycle,
and therefore, the capacity assessment on lithium battery
is necessary and conducive to the adjustment of its oper-
ating status in due time. As battery energy storage is
generally expensive, it is thus a key issue to establish an
effective battery model to analyze the technical and eco-
nomic characteristics of energy storage system in new
energy application.
In [11], a simplified constant power model is adopted

which considers capacity limit but the influence of rele-
vant parameters are neglected. Such simplified model is
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incapable of effectively verifying the application results
of energy storage. In [12], a Thevenin’s equivalent circuit
model is used but it results in significant errors due to
the negligence of the influence of the state of charge
(SOC) on model parameters. The modeling methods in
[13–15] present the corresponding numerical relation-
ship between the open circuit voltage, the resistance, the
capacitance and the SOC. However, methods for esti-
mating SOC are not included. In [16], a corresponding
spatial model based on the equivalent circuit model of
lithium iron battery is proposed where the model pa-
rameters are estimated using least square method with
variable forgetting factors. However, all the above-
mentioned models fail to consider the capacity loss dur-
ing the battery’s life cycle. In [17, 18], the cycle life of
high-power lithium iron phosphate battery is studied.
Experiment results indicate that battery aging leads to
significant impedance amplification and capacity attenu-
ation during the battery’s life cycle. Therefore, it is ne-
cessary to monitor the battery capacity to avoid damages
caused by over charge and discharge.
In this paper, the state equations based on the equiva-

lent circuit model of lithium iron phosphate battery are
established. The rest of this paper is organized as fol-
lows. Section 2 describes the modeling of lithium iron
phosphate battery based on the Thevenin’s equivalent
circuit. In Section 3, experimental results under constant
current and no-load charging and discharging are pro-
vided to analyze the resistance and capacitance in the
model under different SOC conditions. Capacity loss
and available capacity based on different charging and
discharging depths are also discussed. And the methods
section extended Kalman filtering algorithm (EKF) to es-
timate the SOC of lithium battery caused by uncertain
noise and verify the feasibility of the method. A simula-
tion model of actual lithium batteries is developed using
Matlab/Simulink in Section 4 and Section 5. Finally, Sec-
tion 6 draws the conclusion.

2 Equivalent circuit of lithium iron phosphate
battery
Lithium iron phosphate battery is a lithium iron second-
ary battery with lithium iron phosphate as the positive
electrode material. It is usually called “rocking chair bat-
tery” for its reversible lithium insertion and de-insertion
properties. A lithium iron phosphate battery is usually
composed of positive electrode, negative electrode, sep-
arator and electrolyte, as shown in Fig. 1. The positive
electrode is composed of lithium iron phosphate mater-
ial and the negative electrode is a mixture of solid active
materials (LixC6) and carbon granule. The electrochem-
ical reaction occurs on the interface between the active
particles of the positive and negative electrodes and
electrolyte.

Lithium iron battery is actually a concentration battery
whose charge and discharge are realized by the concen-
tration difference of Li+. Reaction on the positive elec-
trode is:

LiFePO4 ⇄
ch arge

disch arge
Li i−xð ÞFePO4 þ xLiþ þ xe− ð1Þ

and reaction on the negative electrode is:

xLiþ þ xe− þ 6C ⇄
ch arge

disch arge
LixC6 ð2Þ

The overall equation is give as:

LiFePO4 þ 6xC ⇄
ch arge

disch arge
Li 1−xð ÞFePO4 þ xLiC6 ð3Þ

Battery energy storage is difficult to be mathematically
modeled in detail with conventional physical models as
it is an electrochemical reaction process. The accuracy
and applicability of the model need to be balanced. Sim-
ple models are unable to reflect batteries’ characteristics
while detailed models may significantly complicate the
solution and application of control strategies. The
equivalent circuit modeling is adopted for most of exist-
ing systems based on the dynamic characteristics and
external characteristic performance of the batteries.
The external characteristics based equivalent circuit

modeling is a simple and effective way for electrochem-
ical battery modeling. The equivalent circuit model
constructs a circuit network with voltage source, capaci-
tance, resistance, inductance and other electrical compo-
nents to simulate a battery’s external transient and
steady-state characteristics. It has been applied widely in
electrical engineering for its simplicity as the parameters
can be accurately identify. It is convenient to integrate
multiple elements and is suitable for mathematical
analysis.
The Thevenin’s equivalent circuit model, which is the

most typical battery model at present, is shown in Fig. 2.
As shown, Ub is the output voltage of the lithium bat-

tery and Uoc is the open circuit voltage representing
SOC’s nonlinear function. Cuse is the effective/available
capacity, and Rs is the battery’s ohmic resistance. The
two RC links represent the electrochemical polarization
and concentration difference of polarization during op-
eration, respectively. η is the charge and discharge effi-
ciency. The following state equations can be established
according to the second order RC equivalent circuit
model and Kirchhoff laws:
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Ub ¼ Uoc−U1−U2−US

U
•

1 ¼ −
1

R1C1
U1 þ Ib

C1

U
•

2 ¼ −
1

R2C2
U2 þ Ib

C2

SOC ¼ SOC 0ð Þ−
Z t

0

Ibη
Cuse

dt

8>>>>>>><
>>>>>>>:

ð4Þ

According to the equivalent circuit model, the left and
right circuit networks are coupled and connected by
SOC. The state equation indicates that the battery’s out-
put voltage is determined by both open circuit voltage
and polarization voltage, whereas the polarization volt-
age is directly related to its corresponding resistance,
capacitance and current. The fundamental part of bat-
tery modeling is to estimate the available capacity (Cuse),
SOC, open circuit voltage, resistance and capacitance of
the battery in real time.

3 Methods
3.1 Identification of parameters related to battery model
Based on Section 2, the parameters of the equivalent cir-
cuit model of lithium battery vary with load and external
condition as its operating status is affected by discharge
depth, cycle number, capacity loss and etc. Therefore, a
more reliable model needs be developed by comparing
experimental measurements and off-line modeling to es-
tablish the relationships between different parameters.
The state of charge (SOC) is the most important influ-

ence factor among all the parameters of the resistance-
capacitance model. Thus, determining the relationship
between impedance parameters and SOC under the bat-
tery’s standard operation is the primary part of
resistance-capacitance modeling. Uoc and SOC of lithium
battery have a stable relationship under normal oper-
ation conditions and is not affected by temperature.
Thus, Uoc can be considered to be solely determined by

Fig. 1 Schematic diagram of lithium battery
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Fig. 2 The external characteristic based equivalent circuit
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SOC and their relationship can be acquired with a fitting
function.
The model’s resistance and capacitance parameters

can be obtained by idling discharge and charge exper-
iments. These experiments are under different SOCs
(the initial value and step can be set at 0.2 and 0.02
respectively). The measured voltage and current
curves are shown in Fig. 3.
The above waveform indicates that voltage drops

sharply in a certain period (OA period) when the bat-
tery is discharged while the polarization voltage only
changes slightly due to the voltage drop caused by the
ohmic resistance (Rs). Thus, it is possible to estimate
the ohmic internal resistance inside the battery as the
data changes. The terminal voltage then enters a class
index variation period (AB period) due to the slow drop
of polarization voltage (U1, U2) on the RC circuit, and
such period can be considered as a zero-state response
period which is described with the following equation:

Ub ¼ UA−a� 1−e−t=t1
� �

−b� 1−e−t=t2
� �

ð5Þ

where UA represents the voltage at A, a and b are the
values obtained by curve fitting. To estimate the resist-
ance and capacitance in the RC circuit (6) applies:

R1 ¼ a
I

C1 ¼ τ1
R1

R2 ¼ b
I

C2 ¼ τ2
R2

8>>>>>>><
>>>>>>>:

ð6Þ

Equation (7) can be used to estimate the correspond-
ing resistance and capacitance during charge and to ob-
tain the resistance and capacitance values under
different SOCs:

Ub ¼ UD þ a� 1−e−t=t1
� �

þ b� 1−e−t=t2
� �

ð7Þ

where the parameters a, b, t1 and t2 are the same as in
(5).
The R and C values under different states can be ac-

quired by conducting spline interpolation.

3.2 Assessment of battery’s available capacity
A battery has a limited service life. Because of the con-
tinuous charge and discharge during the battery’s life
cycle, the lithium iron loss and active material attenu-
ation in the lithium iron phosphate battery could cause
irreversible capacity loss which directly affects the bat-
tery’s service life. A real-time capacity assessment on the
battery can facilitate the correct recognition of the bat-
tery’s real-time status and the prediction on the battery’s
status at certain time point in the future.
The relationship between the lithium battery operation

at ΔSOC = x and the corresponding maximum charge
and discharge cycle number Nm|ΔSOC = x is fitted based
on the experimental data. The fitting function is shown
in (8) and is used to calculate the maximum charge and
discharge cycle number of lithium battery under a cer-
tain charge and discharge circulation depth during its
life cycle:
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Fig. 3 The experimental curves of discharge and charge for constant current and no-load loading

Li et al. Protection and Control of Modern Power Systems  (2018) 3:5 Page 4 of 9



NmjΔSOC¼x ¼ 640600x8−2975000x7 þ 5825000x6

−62800002x5 þ 40980002x4−1691000x3

þ455900x2−83820xþ 12760

ð8Þ

Figure 4 shows the maximum charge and discharge
cycle numbers when the lithium battery operates at dif-
ferent ΔSOCs. It can be seen that the battery has differ-
ent maximum charge and discharge cycles under
different ΔSOCs, with the cycle number being the largest
under shallow charge/discharge. The ratio between the
cycles under full charge/discharge and under various
ΔSOCs is defined as:

α xð Þ ¼ Nm 1ð Þ
Nm xð Þ ð9Þ

where Nm(x) and Nm(1) are the battery’s maximum cycle
numbers when the charge and discharge depth equals x
(x∈(0,1)) and 1, respectively.
Assuming the battery is charged and discharged for n

times and the charge and discharge depths are x0, x1, …
and xn respectively, the battery’s equivalent charge and
discharge times can be obtained by adding up the
equivalent charge and discharge coefficients under dif-
ferent charge and discharge depths as:

N 0
m ¼

Xn
k¼1

α xkð Þ ð10Þ

The battery’s state of health (SOH), also called the
state of life which reflects the battery’s health status, is
defined as the ratio between the nominal capacity and
the capacity released by the battery discharging at a cer-
tain rate from full charge until the cut-off voltage as:

SOH ¼ Cuse

CCapicity
� 100% ð11Þ

SOH varies from 0 to 100%, reflecting the battery’s
health status and indicates the aging degree. A battery
would have lost its functions and cannot perform charge
and discharge when SOH is reduced to 20 to 30% [12].
The available capacity of lithium battery at moment t

can be measured by:

Cuse ¼ CCapicity−
Nm0

Nm 1ð ÞCCapicity � γ ð12Þ

where γ is a constant and refers to the maximum
allowed capacity loss during the battery’s normal oper-
ation, i.e. the maximum SOH value. In this paper γ is set
at 0.3.

3.3 State estimation on SOC with EKF algorithm
According to the previous sections, SOC is an important
parameter influencing the safe and reliable operation of
lithium battery, and accurate SOC estimation can facili-
tate the real-time adjustment of control strategy by
operators.
The Kalman filtering algorithm is composed of state

equation, output equation and the statistical characteris-
tics of system process noise and observation noise. The
required states or parameters are calculated according to
the system’s state equation and output equation. This al-
gorithm can perform optimal minimum variance estima-
tion on SOC and facilitate the prediction and estimation
on battery at a certain moment in the future. The con-
ventional Kalman filtering algorithm is a state equation
with a linear system while the extended Kalman filtering
algorithm (EFK) is required for nonlinear models such
as battery. This paper adopts EKF to conduct estimation
on the battery’s real-time SOC state with the following
procedure.
The Kalman filtering state equation and output

equation of lithium battery based on its equivalent
mathematical model is established. The state equation
is given by:

SOC k þ 1ð Þ
u1 k þ 1ð Þ
u2 k þ 1ð Þ

2
4

3
5 ¼

1 0 0
0 e−

Δt
τ1 0

0 0 e−
Δt
τ2

2
4

3
5�

SOC kð Þ
u1 kð Þ
u2 kð Þ

2
4

3
5

þ
−
ηΔt
Cuse

R1 1−e−
Δt
τ1

� �
R2 1−e−

Δt
τ2

� �

2
66664

3
77775� i kð Þ þ w kð Þ

ð13Þ

and the output equation is:
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Fig. 4 Relationship between different SOC and maximum cycle number
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ub kð Þ ¼ uoc kð Þ−i kð Þ � Rs kð Þ
−u1 kð Þ−u2 kð Þ þ v kð Þ ð14Þ

For general patterns corresponding to the Kalman fil-
tering state equation, let:

Ak ¼
1 0 0
0 e

Δt
τ1 0

0 0 e
Δt
τ2

2
4

3
5 Bk ¼

−
ηΔt
C

R1 1−e
Δt
τ1

� �
R2 1−e

Δt
τ2

� �

2
66664

3
77775

Xk ¼
SOC kð Þ
U1 kð Þ
U2 kð Þ

2
4

3
5

U kð Þ ¼ i kð ÞC kð Þ ¼ ∂g
∂x

¼ ∂U0

∂SOC
−i kð Þ � ∂Rs

∂SOC
−1 −1

� �

ð15Þ

The real-time SOC can be estimated according to the
flow chat shown in Fig. 5.
In Fig. 5, k|k-1 and k-1|k-1 refer to the results of the

previous state prediction and the optimal results of the
previous moment, respectively. P(k), Q(k) and R(k) cor-
respond to the covariances of X(k), W(k) and V(k).

The initial values must be selected for the Kalman fil-
tering algorithm, and X(k) contains the three state pa-
rameters of SOC(k), U1(k) and U2(k). The SOC at the
final moment of the last operation can be selected as the
initial value. Since the battery has insignificant effect
during the initial operation, the polarization voltage can
be considered as 0. The covariances Q(k) and R(k) are
defined as:

Q kð Þ ¼ E w kð Þ � w kð ÞT
h i

R kð Þ ¼ E v kð Þ � v kð ÞT
h i ð16Þ

and they are considered as [15]

Q 0ð Þ ¼
0:001 0 0
0 0:001 0
0 0 0:001

2
4

3
5P 0ð Þ ¼

0:1 0 0
0 0:01 0
0 0 0:001

2
4

3
5

R 0ð Þ ¼ 0:001

4 Results
The data is collected from experiments on domestic lith-
ium iron phosphate batteries with a nominal capacity of
40 AH and a nominal voltage of 3.2 V. The parameters
related to the model are identified in combination with
the previous sections and the modeling is performed in
Matlab/Simulink to compare the output changes
between 500 and 1000 circles. Meanwhile, the SOC is
estimated with EKF under certain current and voltage
for verification.
The obtained relationships between the open circuit

voltage and SOC from the measurement and fitted curve
are shown in Fig. 6 where an obvious nonlinear relation-
ship can be observed. The fitted curve is obtained using
(17) and can accurately estimate the open circuit volt-
ages under different SOCs.

U
oc

SOC

Measured curve

Fitting curve

Fig. 6 Relationship between open circuit voltage and SOCFig. 5 Flow chart for the Kalman filtering algorithm
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UOC ¼ −0:7644e−26:6346�SOC þ 3:2344þ 0:4834� SOC
−1:2057� SOC2 þ 0:9641� SOC3

ð17Þ

The mathematical model for capacity assessment illus-
trated in section 4 is used for the discharge experiment
on new and used batteries under the same experimental
condition. The discharge curves in 500, 1000 and
1500 cycles are shown as Fig. 7. It indicates that, at the
same discharge rate, the batteries’ voltages displays sig-
nificant differences towards the end of the discharge
period after different cycle numbers. The terminal volt-
age drops and the discharge cut-off voltage is reached
most quickly after 1000 cycles.
Figure 8 further compares the variation of terminal

voltage under different SOCs between measured and

estimated ones with and without considering battery
capacity loss after 1000 cycles.
It is shown that significant errors could occur in the

adjacent period of the SOC estimation without consider-
ing capacity loss. It can also be seen that the batteries
have significant output voltage variation under different
SOCs which poses seriously challenges to the accuracy
of the modeling and output voltage estimation.
Table 1 shows that calculation error varies under differ-

ent SOC intervals, especially under low and high SOCs.
Without considering the lithium battery capacity loss, the
maximum calculation error is 11.2% after 1000 cycles,
whereas the maximum error is reduced to 3.8% after the
capacity loss is considered in the model. Therefore, the es-
timation of the current battery capacity is crucial and con-
ducive for improving the battery modeling accuracy and
correctly predicting the operation status.

5 Discussion
As the battery energy storage system presents “random”
charge and discharge characteristics during application,
the battery’s current may change significantly. In such
cases, the conventional Ah counting method can result
in significant errors while the extended Kalman filtering
algorithm is a better choice. A more accurate SOC can
be obtained quickly based on the established model ac-
cording to the measured current and voltage.

1000 times

500 times

New battery

te
rm

in
al
vo
lta
ge
/V

Time(s)

Fig. 7 Discharge curves after different cycles
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capacity loss

After verification
Actual curve

Fig. 8 Variation of measured and estimated terminal voltage with
capacity after 1000 cycles

C
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nt
/A

Time(s)

Fig. 9 Variation of partial current with time

Table 1 Voltage errors between the actual and estimated
values with and without considering capacity loss

SOC (0,0.3) (0.3,0.7) (0.7,1)

Voltage error without considering
capacity loss

0.3–0.4 V 0–0.03 V 0–0.1 V

Voltage error considering capacity
loss

0–0.1 V 0–0.02 V 0–0.02 V
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Figures 9 and 10 show the battery’s partial operating
condition and the corresponding voltage, respectively.
The changes of SOC calculated by EKF according to

the changes of current and voltage is shown in Fig. 11
and is compared to measured values. As shown, the esti-
mation results of SOC using EKF can adequately reflect
the actual value and simulate the nonlinear dynamic
characteristics of the battery. Therefore, the proposed
method can be used for real-time estimation of SOC in
energy management system.

6 Conclusions
A battery’s capacity reduces during the life cycle which
affects the estimation of the battery status. This paper
carries out a comprehensive study on cycle numbers,
discharge depth, current and the capacity reduction dur-
ing a life cycle. Methods for identifying parameters re-
lated to the lithium battery model based on the
equivalent circuit are presented, and a mathematical

model for battery capacity estimation is proposed.
Method for estimating SOC based on the established
mathematical model is presented to facilitate battery en-
ergy management and real-time status adjustment. The
case studies highlight the followings:

(1)Considering the capacity loss during the battery’s life
cycle significantly improves the estimation accuracy
on the real-time operation status and facilitates the
adjustment of related states.

(2)The extended Kalman filtering algorithm for SOC
estimation and system discretization can be used for
both computer programming and the establishment
of energy management system.
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