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Abstract

Recent advances in battery energy storage technologies enable increasing number of photovoltaic-battery energy
storage systems (PV-BESS) to be deployed and connected with current power grids. The reliable and efficient utilization of
BESS imposes an obvious technical challenge which needs to be urgently addressed. In this paper, the optimal operation
of PV-BESS based power plant is investigated. The operational scenarios are firstly partitioned using a self-organizing map
(SOM) clustering based approach. The revenue optimization model is adopted for the PV-BESS power plants to determine
the optimal operational modes under typical conditions for a set of considerations, e.g. power generation
revenue, assessing rewards/penalties as well as peak shaving/valley filling revenue. The solution is evaluated through a
set of case studies, and the numerical result demonstrates the effectiveness of the suggested solution can optimally
operate the BESS with the maximal revenue.

Keywords: Photovoltaic (PV), Battery energy storage systems (BESS), Self-organizing map (SOM), Typical scenarios,
Operation modes

1 Introduction
The pursuit of low-carbon economy has significantly
promoted the development of renewable energy across
the world, particularly in China. Among the different re-
newable energy sources, photovoltaic (PV) has received
much attention and the capacity of deployment is envisaged
to quickly increase in the future [1]. It is well-known for
the stochastic nature of the PV power generation [2–5].
Due to the fluctuations, there is a deviation between the
predicted output and the actual output of PV power plant,
which leads to the increase of the system rotation reserve
capacity. Therefore, power dispatching agencies will assess
the day-ahead power prediction accuracy of PV power
plants, and PV power plants need to bear the correspond-
ing assessment fees.
The BESS is capable of fast bidirectional regulation, and

hence can be installed within the PV power plants for PV
generation regulation [6, 7]. With the regulation and con-
trol of the BESS, the PV-BESS power plant can effectively

restrain the fluctuation of PV power output, reducing the
negative impact of photovoltaic power generation access
to the grid. Furthermore, the deviation between actual
output and predicted output of PV power can be reduced,
which means the reserve costs of power grid enterprises
and the assessment fees of the power plant will be re-
duced. Additionally, the potential of the BESS to partici-
pate in ancillary services can be fully excavated. Part of the
BESS will be put into the auxiliary services such as peak
shaving and valley filling, and a portion of additional eco-
nomic benefits will be obtained. The combined generation
of PV and BESS can provide a new solution to the grid
connection of large-capacity PV power plants and is one
of the future development directions.
Currently, the PV-BESS power generation is mainly based

on demonstration projects. It is an important means to im-
prove the economic efficiency of the PV-BESS power plants
to take full use of the BESS and explore the feasible oper-
ation mode under the typical scenarios. A typical scenario of
a PV-BESS power plant refers to a representative case with
the typical temporal characteristics of PV power output
embedded. The PV power generation is mainly affected
by sunlight, and hence exhibit periodical and temporal
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characteristics [8]. To reduce the amount of calculation and
maintain the objectivity of the analysis results, the PV power
output of the PV-BESS power plant in the four seasons of
the year can be divided into suitable typical scenarios.
There are few researches on operational mode of the PV-

BESS power plants under typical scenarios. Some refer-
ences about the typical scenarios analysis of wind farm and
Microgrid, and the literatures about the economic oper-
ation control strategy and the optimal allocation of energy
storage capacity can be referred to in this paper. Reference
[9] presented a novel approach to planning distributed gen-
eration (DG) and distribution network frames based on a
multi-scenario technique. A typical scene analysis method
based on K means clustering algorithm was proposed in
[10], and a typical scene set that reflects the characteristics
of historical data within the computational cycle is formed.
In [11], an annual time series production simulation model
with large scale wind energy and solar power generation
was developed based on timing sequence. In [12], the time
series of wind power output curve and system load curve
were studied based on the theory of time series analysis to
calculate the capacity of wind power that the system can
accept. In [13], aiming at minimizing the operation cost, an
energy storage capacity optimization model considering the
abandoned energy of wind power and the energy loss of the
energy storage is constructed. In [14], with the minimum
acquisition and replacement cost of energy storage system
in the life cycle of wind farm as the optimization objective,
the optimal allocation model of energy storage capacity is
established. In [15], a practical and economical method for
energy storage systems (ESS) configuration to stabilize the
power fluctuation of distribution feeder lines was proposed
on the basis of three types of filters.
In this paper, a typical scenarios segmentation method

based on SOM clustering algorithm is proposed based
on the historical power generation data of a PV power
plant. Then with the optimization objective of maximiz-
ing economic returns, the optimal operation model of
the PV-BESS under typical scenarios is established. The
economic benefit in the model is the joint benefits of the
power generation, the rewards or penalties of the assess-
ment, and the benefit of the BESS from peak shaving
and valley filling. Finally, on the basis of measured data
of a PV power plant and the parameters of a demonstra-
tive PV-BESS power plant, the operation modes of the
PV-BESS power plant are established, which can provide
guidance for the operation of the PV-BESS power plants.

2 Development of typical scenarios based on SOM
clustering algorithm
2.1 Generation of forecasted PV power in typical scenarios
of each season
In this paper, the daily generation of a PV power plant
within a year is analyzed for four different seasons, i.e.

spring, summer, fall and winter. The self-organizing map
(SOM) clustering algorithm is employed to divide the PV
output curves of each season into five categories. The
clustering centers of each type are obtained as the fore-
casted PV output for each typical scenario.
The SOM neural network is an unsupervised competi-

tive learning technique that can carry out the character-
istic identification and clustering, e.g. load analysis and
clustering [16–18]. SOM network consists of two layers
neurons of input and output. Each neuron in the input
layer is connected with neurons of the output layer
through a variable weight, and the output neurons form
a two-dimensional planar array.
In this work, the PV output vector Ppv,=[Ppv(1), Ppv(2),

…, PPV(n)] for in total 96 time slots is used as the input
vector of SOM network, as illustrated in Fig. 1:
Taking the spring as an example, the main steps of the

generation of forecasted PV output in each typical sce-
nario based on the SOM algorithm are as follows:

(1)Determine the neural network structure. The number
of neurons in the input layer is n = 96, and each neuron
corresponds to a component of the input eigenvector.
The number of output neurons is j = 1×5 = 5.

(2)Network initialization. Set the random value of the
[0,1] to the connection value wnj(t) of the input
element to the output element,n = 1, 2,…, 96;j = 1,
2, …, 5.

(3) Select the PV output vector PPV of one day in
spring, provide it to the input layer and make the
normalization:

Ppv ¼ Ppv

Ppv

�� �� ¼ Ppv 1ð Þ;Ppv 2ð Þ;⋯;Ppv 96ð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ppv 1ð Þ� �2 þ Ppv 2ð Þ� �2 þ⋯þ Ppv 96ð Þ� �2q

ð1Þ

PPV(1) PPV(2) … PPV(96)

Input layer

Output layer

Fig. 1 PV output curve identification based on SOM clustering
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(4) Calculate the Euclidean distance:

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX96
n¼1

Ppv nð Þ−wnj

� �2

vuut ; j ¼ 1; 2;⋯; 5 ð2Þ

where, the neuron j* with the smallest distance is the
winning neuron.

(5)Adjust the connection weight vector. Update the
connection vector of neurons within j*and its
neighbourhood Nj*(t):

wnj t þ 1ð Þ ¼ wnj tð Þ þ η tð Þ Ppv−wnj tð Þ� �
;

j ¼ 1; 2;⋯; 25 0 < η tð Þ < 1ð Þ
ð3Þ

where, η(t) is the variable learning speed, η(t) and Nj*(t)
neighborhood decay with time.

(6) Select the new day’s PV output data from step 3) to
repeat the learning process until the daily PV output
in the spring has been trained.

(7)After the training, the output curves with the same
winning neuron number are transformed into the
same class.

(8) Each clustering center obtained by formula (4) is
used as the PV prediction output curve for each
typical scenario Zl, and Zl = {Ppv,1, Ppv,2, …, Ppv,l}.

Ppvfor ¼
1
Nl

XNl

i¼1

Ppv;i ð4Þ

where, Ppv_for is the clustering center of Zl, i.e. the fore-
casted PV output, Ppv_for = [Ppv_for(1), Ppv_for(2), …,
PPV_for(k)], k = 1,2,…,96. Nl is the number of curves
which contained by the Zl, Ppv,i is the i-th PV output
curve of in Zl.

2.2 Generation of actual PV output in each typical
scenario
Based on the five clustering results of each season’s PV
output given in Section 2.1, all kinds of output curves are
re-classified by SOM algorithm for more detailed cluster-
ing. The clustering centers of each type are obtained as
the PV actual output Ppv_act for each typical scenario
under different output conditions, and Ppv_act = [Ppv_act(1),
Ppv_act(2),…, PPV_act(k)], k = 1,2,…,96. The main process is
shown in Fig. 2.

3 Formulation of revenue optimization model
3.1 Objective functions
In this paper, the revenue of PV-BESS power plants
in typical scenario is divided into three parts: power
generation revenue, assessing rewards or penalties and
peak shaving and valley filling revenue of the BESS.
In different typical scenarios, the capacity of BESS for
optimizing PV power and the capacity of BESS for
peak shaving and valley filling are optimized to
maximize the revenue of the PV-BESS based power
plant.

3.1.1 Power generation revenue
The revenue of the PV-BESS power plant is mainly
from the grid connected power generation. The elec-
tricity charge is settled in accordance with the re-
gional unified photovoltaic benchmark price. The daily
power generation revenue of the PV-BESS power plant
can be expressed as:

Relc ¼ ρpv⋅Qpv−bess ð5Þ

Start

The daIly output of a PV power plant within a year is
divided according to the four different seasons of

spring, summer, autumn and winter.

Using the SOM algorithm, the output curves for each
season are grouped into five categories according to steps 1)
to 8 in section 2.1, and each type represents a typical scenario.

The clustering curves obtained for each
typical scenario is re-classified by SOM for
more detailed clustering

Select three representative clustering results, and
the clustering center of each category calculated
according to formula (4) is used as the actual output of
PV plants in each typical scenario.

End

Are all scenarios
clustered?

YES

NO

Fig. 2 Generation of actual PV output in each typical scenario
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Qpv−bess ¼
XN
k¼1

Ppv−bess kð Þ⋅Δt

¼
XN
k¼1

Ppvact kð Þ þ Popt
bess kð Þ� �

⋅Δt ð6Þ

where, Relc is power generation revenue, ρPV is the
unified photovoltaic benchmark price of the area,
Qpv-bess is daily generation, Ppv-bess(k) is the power of
PV-BESS at sampling point, Ppv_act(k) is the PV
power of sampling point, Popt

bess kð Þ is discharge power
of the BESS at sampling point, Δt is sampling time
interval, N is the number of sampling points,
N = 24/Δt.

3.1.2 Assessing rewards or penalties
After the photovoltaic power plant is connected to
the power grid, the power generation will be
assessed by the dispatching department according to
the management measures. Take the detailed rules of
the implementation of grid operation management
for the north-west regional power plants in China as
an example, according to Article No.31 [19], the de-
viation between the 96 points day-ahead forecasted
PV power and the actual PV power should be less
than 10%. If the deviation is less than 10%, the plant
will be rewarded by 1000 yuan/(104kWh) according
to the integral electricity. If the deviation range is
between 10% and 20%, the plant will be penalized by
1000 yuan/(104kWh) according to the integral elec-
tricity. If the deviation is more than 20%, the plant
will be penalized by 3000 yuan/(104kWh) according
to the integral electricity.
According to the regulation, the root mean square

error (RMSE) is calculated as follows:

RMSEpv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Ppv ið Þ−Ppvfor ið Þ
� �2

s

Cap•
ffiffiffi
n

p � 100% ð7Þ

where, RMSEpv is the root mean square error between the
day-ahead forecasted PV power and actual PV power
(%), Ppv(i) is the actual PV power at i-th moment
(kW), Ppv_for(i) is the forecasted PV power at i-th mo-
ment (kW), Cap is the average capacity of generating
units (kW), n is the number of moments traversed by
the forecasting.
For PV-BESS power plants, the grid connected power

is the sum of the PV power and BESS power, so the for-
mula of RMSE above can be expressed as [20]:

RMSEpv−bess ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Ppv−bess ið Þ−Ppvfor ið Þ
� �2

s

Cap•
ffiffiffi
n

p � 100%

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Popt
bess ið Þ þ Ppvact ið Þ−Ppvfor ið Þ

� �2
s

Cap•
ffiffiffi
n

p � 100%

ð8Þ
The assessing rewards or penalties of the PV-BESS

power plant can be expressed as:

Rass ¼ αass⋅Qpv−bess ð9Þ
where, Rass is the assessing rewards or penalties (yuan),
αass is the coefficient of the rewards or penalties (yuan/
kWh). The value of αass can be set up according to the
relevant contents of the assessing rules of the power grid
enterprises in different regions.

3.1.3 Peak shaving and valley filling revenue of the BESS
The primary role of BESS in a PV-BESS power plant is to
optimize the output of PV power generation system and
reduce the deviation between the actual and forecasted
PV output. While in actual operation, only the partial cap-
acity of the BESS is needed by the optimization of PV
power. The PV-BESS power plant can take the remaining
BESS into the power grid to help cut peak and fill valley,
charging with low electricity price in valley time, and dis-
charging with high electricity price during peak time, to
obtain some extra income [21].
The revenue of the BESS participating in peak shaving

and valley filling can be calculated by the below formula:

Rtou ¼
X24
i¼1

ρtou ið Þ⋅Ptou
bess ið Þ ð10Þ

where, Rtou is the revenue of the BESS participating in
peak shaving and valley filling (yuan), ρtou(i) is the time-
of-use price during i-th period (yuan/kWh), Ptou bess(i)
is the charging or discharging power of the BESS in i-th
period (kW). At the same time, the BESS will only main-
tain a single charge or discharge state.
Based on the above analysis, the optimal objective

functions of the revenue optimization model of PV-BESS
power plants in typical scenario can be expressed as:

Max Rsum ¼ Relc þ Rass þ Rtou ð11Þ
where, theRsum is the revenueof thePV-BESSpowerplants.

3.2 Constraints
In the typical scenarios developed in this paper, the
calculation of revenue should be consistent with the
operation constraints of the PV-BESS power plant, as
follows:
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(1) Power balance constraint of the whole system [22]

Ppvact kð Þ þ Popt
bess kð Þ ¼ Ppv−bess kð Þ ð12Þ

(2) Power constraint of the BESS

−Popt
bess−max≤P

opt
bess kð Þ≤Popt

bess−max ð13Þ

where, Popt
bess−max is the maximum charge and discharge

power of the BESS used to optimize PV power (kW).

(3) State-of-Charge (SOC) constraint of the BESS [23]

The SOC of the BESS refers to the ratio of residual en-
ergy to total capacity. To prevent the overcharge and
over discharge of the BESS, the SOC of the BESS should
be bound up to the upper and lower limits.

SOCopt
bess:min≤SOC

opt
bess kð Þ≤SOCopt

bess:max ð14Þ
where, SOCopt

bess kð Þ , SOCopt
bess−max kð Þ and SOCopt

bess−min kð Þ
are respectively the SOC and the upper and lower limits
at the k-th sampling point.

SOCopt
bess kð Þ ¼ SOCopt

bess 0ð Þ−
Pk
i¼1

ηbessP
opt
bess ið Þ⋅Δt

Eopt
bess−max

ð15Þ

where, SOCopt
bess 0ð Þ is the initial state of the SOC (%),

Eopt
bess−max is the rated capacity of the BESS used to

optimize the PV output (kWh), ηbess is the charge and
discharge efficiency of the BESS, which is set as 90% in
this paper.

(4) Capacity allocation constraints of the BESS

0≤Eopt
bess−max≤Ebess ð16Þ

where, Ebess is the rated capacity of the whole BESS in
the PV-BESS power plant.

4 Proposed algorithmic solution
In this paper, the joint benefit model of typical scenario
for PV-BESS power plant is established, which mainly
solves the following problems: by adjusting the capacity
of the energy storage battery (Eopt

bess−max ) to optimize the
joint benefit (Rsum) of the typical scenario making it can
be maximized. The variables to be optimized are
Eopt
bess−max and Popt

bess kð Þ.
In a typical scenario, the PV prediction curve Ppv_for(k)

and the actual curve Ppv_act(k) can be obtained from the
analysis of the section 2. The solution of the model is as
follows:

(1) Enter calculation parameters Ppv-for(k) and Ppv_act(k).
(2) Set the values of Eopt

bess−max and Popt
bess−max.

(3) Let Popt
bess kð Þ as the input variable, calculate the

minimum value of RMSEPV-bess and the
corresponding Popt

bess kð Þ using the genetic algorithm
(GA).

(4) Calculate the Relc, the Rass and the Rtou.
(5) Calculate the Rsum of typical scenario for PV-BESS

power plant.
(6) Judge whether all values of the Eopt

bess−max are
traversed; if so, proceed to the next step; otherwise,
return to the step (2) and repeat steps (2) to (5).

(7) Select the corresponding Eopt
bess−max as the optimal

solution when the Rsum takes the maximum value.
(8) The specific flow of model solving is shown in Fig. 3.

For each typical scenario, the above model is used to cal-
culate the optimal Eopt

bess−max ið Þ corresponding to each PV

actual curve. The Eopt
bess−max is obtained by the formula (17):

Eopt
bess−max ¼

P3
i¼1

Eopt
bess−max ið Þ⋅ηpv ið Þ

ηs
ð17Þ

Where, Eopt
bess−max ið Þ (i = 1,2,3) is the capacity of the

BESS for optimizing PV output under the i-th PV actual
curve for this typical scenario, ηpv(i) is the probability of
the i-th actual PV curve, ηS is the probability of the typ-
ical scenario.
In summary, the forecasted PV output Ppv-for(k) and

three types of actual PV output Ppv_act(k) in each sce-
nario developed by the SOM are firstly employed as the
calculation parameters. Then the Eopt bess-max(i) corre-
sponding to the maximum value of Rsum with the Ppv-
for(k) and i-th Ppv_act(k) is calculated based on GA.
Finally, on the basis of Eopt

bess−max ið Þ, ηpv(i) and ηS, the op-

timal Eopt
bess−max of each scenario can be calculated.

5 Case studies and numerical result
5.1 Data sources and system description
The object of this paper is the demonstration PV-BESS
power plant built in Golmud District of Qinghai, China
in 2016. In the PV-BESS power plant, the capacity of the
PV generation units is 50 MW, the rated power of the
energy storage system is 15 MW, and the rated capacity
of the energy storage system is 18 MWh. Due to the
short time of grid connection of the PV-BESS power
plant, the historical data of PV power generation is from
a 50 MW PV power plant in Haixi of Qinghai, China in
2012, and the sampling interval is 15 min. Some of the
calculation parameters are shown in Table 1.
The value of αass is set up according to the detailed rules

of the implementation of grid operation management for
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the north-west regional power plants in China, which are
shown in Table 2.
According to the method of peak and valley time

division in most provinces of China, the peak time is
08:00–12:00 and 17:00–21:00, the average time is
12:00–17:00 and 21:00–24:00, and the valley time is
00:00–08:00. The electricity tariff in the average time
is the usual tariff, the electricity tariff in peak time is
50% higher than the usual tariff, and the electricity
tariff in the valley time is 50% lower than the usual
tariff.

5.2 Development of the typical scenarios
The historical data of PV power generation from a
50 MW PV power plant in Haixi of Qinghai, China in
2012 is employed to develop the typical scenarios of the
PV-BESS power plant. The historical data sampling
interval is 15 min, and there are 96 points in the daily
generation power curve. First, the data is processed to
kick out the bad data. Then the typical scenarios

partition method based on SOM clustering algorithm
proposed in this paper is applied to develop the typical
scenarios of the PV-BESS power plant.
Typical scenarios of the four seasons of spring, sum-

mer, fall, winter and the output curves of representative
scenario are shown in Figs. 4, 5, 6, 7. There are five typ-
ical scenarios in each season: (a) ~ (e), and the output
curves of representative scenario of each season include
the predicted output curve: PVfor, and three different ac-
tual output curves: PV1, PV2 and PV3. PVfor is the clus-
tering center curve of the representative scenario. Due
to the influence of the sunlight, part of the 96 sampling
data of the PV output curve is zero. For ease of analysis,
only the sampling data between 8:00 to 20:00 of the typ-
ical scenarios are shown. The distribution probability of
the typical scenarios and three actual PV output curves
in each typical scenario are shown in Fig. 8.
The clustering results above show that the typical sce-

narios of photovoltaic power generation in different sea-
sons are divided into 5 types, and the clustering center
of each typical scenario is regarded as the forecasted PV
power. The PV output curves included in each typical
scenario are clustered into 3 types, the clustering centers
are the three typical actual PV output. As the weather
condition is the main factor of PV power generation,

Fig. 3 The joint benefit model solving process of typical scenario for PV-BESS

Table 1 Calculation parameters

Parameters Value

ρpv 0.9 yuan/kWh

SOCopt
bess:min 10%

SOCopt
bess:max 95%

SOCopt
bess 0ð Þ 50%

Pbess 15 MW

Ebess 18MWh

Table 2 Coefficients of the assessment rewards or penalties

RMSE (%) 0 ~ 10% 10% ~ 20% >20%

αass(yuan/kWh) 0.1 −0.1 −0.3
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each typical scenario reflects the influence of different
weather conditions on the PV output to a certain extent.
For example, the 5 typical scenarios in summer corres-
pond to sunny all day, sunny in the morning while
cloudy in the afternoon, cloudy in the morning while
sunny in the afternoon, cloudy all day and overcast all
day.

5.3 Optimal operation mode under typical scenarios
On the basis of cluster analysis of typical scenarios of
PV-BESS power plants in different seasons of the year,
taking the typical scenarios (a) and (d) as an example,
the process of the development of the optimal operation
mode of PV-BESS in typical scenarios applying the rev-
enue optimization model is analyzed in detail. Figs. 9
and 10 and Table 3 are the results of the model
optimization. The Eopt

bess−Rsum curves under different ac-
tual PV output in the typical scenario (a) and (d) of sum-
mer are shown below.
The following conclusions can be drawn from Figs. 9

and 10 and Table 3:

(1) In the same typical scenario, under different actual
PV power, the operation mode of the PV-BESS power
plant is different, while the trends in the relationship
curve of Eopt

bess−Rsum are the same. This is primarily
because that in the same typical scenario, the weather

conditions are the same, the change trends of the PV
power are the same, and the accuracies of the day-
ahead PV power forecasting are similar.

(2) In different typical scenarios, the optimal operation
modes of PV-BESS power plant are different.
Because in different typical scenarios, the weather
conditions are different, the change trends of the
PV power are different, and the accuracies of the
day-ahead PV power forecasting are different. For
example, in the typical scenario (a) of summer,
the weather condition is sunny all day, and the
fluctuation of sunlight is small, so the accuracy of
the day-ahead PV power forecasting is high. While
the weather condition of the typical scenario (d)
of summer is cloudy all day, and the fluctuation of
sunlight is large, so the accuracy of the day-ahead
PV power forecasting is low.

(3) The main factor that affects the operation mode
optimization of typical scenarios of PV-BESS
power plants is the assessing rewards or penalties.
The purpose of developing the operation modes of
PV-BESS power plants is to reduce the deviation
between the day-ahead forecasted and the actual
PV power by the configuration of the BESS to
regulate the PV output, so the assessing penalties
can be reduced, or the assessing rewards can be
obtained.
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Fig. 7 Typical scenarios and the output curves of representative
scenario in winter
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Fig. 5 Typical scenarios and the output curves of representative
scenario in summer
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Fig. 6 Typical scenarios and the output curves of representative
scenario in fall
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Fig. 4 Typical scenarios and the output curves of representative
scenario in spring
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The operation modes and expected revenue of the PV-
BESS power plant in the typical scenarios in four sea-
sons of the year are shown in Table 4.
Table 4 indicates that in different typical scenarios, the

demand of the PV-BESS power plant for the capacity
and power of the BESS is different. Based on the detailed
analysis of photovoltaic power generation in typical sce-
narios, the BESS can be allocated rationally, which
means the operation modes can be developed to guide
the operation of the PV-BESS power plant and help it
gain greater economic benefits.

5.4 Revenue comparison between the optimal typical
scenario operation modes and the current operation
modes
In the current operation mode of the PV-BESS power
plant, the whole BESS is used to optimize the PV output
to reduce the deviation between the day-ahead fore-
casted PV power and the actual PV power. The revenue
of the PV-BESS power plant between the optimal typical
scenario operation modes and the current operation
modes are compared. The comparison results of the rev-
enue in the twenty typical scenarios in spring, summer,
fall and winter are shown in Fig. 11.
Fig. 11 indicates that compared with the current oper-

ation mode, the optimal typical scenario operation
modes established in this paper can help the PV-BESS
power plant to obtain higher expected economic bene-
fits. In the current operation mode, the annual expected
revenue of the PV-BESS power plant is 88.609 million
yuan. The annual expected revenue of the PV-BESS
power plant with the optimal typical scenario operation
modes is 90.812 million yuan, with additional revenue of
2.203 million yuan.
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Fig. 9 The relationship curve of Eoptbess−Rsum under different actual PV
output in the typical scenario (a) of summer
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PV output in the typical scenario (d) of summer
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Fig. 8 The distribution probability of typical scenarios in the four
seasons of the year (%)

Table 3 The operation mode and revenue of the typical
scenario (a) and (d) of summer

Typical,
scenario

PV
power

Poptbess−max=E
opt
bess−max

(MW/MWh)
Relc,
(×105)

Rass,
(×104)

Rtou,
(×103)

Rsum,
(×105)

Summer
(a)

PV1 0/0 3.380 3.755 9.558 3.851

PV2 0/0 3.446 3.829 9.558 3.925

PV3 0/0 3.350 3.722 8.283 3.824

Optimal 0/0 3.392 3.767 9.133 3.867

Summer
(d)

PV1 7/8.4 2.533 −2.814 5.098 2.303

PV2 4/4.8 2.691 2.99 7.009 3.061

PV3 9/10.8 2.535 2.817 3.823 2.855

Optimal 7/8.4 2.583 1.112 5.217 2.747
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6 Conclusions
In this paper, the PV power output curves of the PV-
BESS power plant are classified into different typical sce-
narios based on the analysis of the historical data of PV
power generation. Then the optimization model for
maximal revenue of the PV-BESS power plants in typical

scenarios considering power generation revenue, asses-
sing rewards or penalties and peak shaving and valley
filling revenue of the BESS is established. On the basis
of this model, the feasible operation models in different
typical scenarios of the PV-BESS power plant are dis-
cussed. The results of the case studies indicate that ap-
plying the typical scenarios analysis method and revenue
optimization model, the BESS of the PV-BESS power
plant can be allocated rationally to develop feasible oper-
ation modes, which can provide guidance for the oper-
ation of the PV-BESS power plant.
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