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Abstract

This paper presents both application and comparison of the metaheuristic techniques to multi-area economic dispatch
(MAED) problem with tie line constraints considering transmission losses, multiple fuels, valve-point loading and
prohibited operating zones. The metaheuristic techniques such as differential evolution, evolutionary programming,
genetic algorithm and simulated annealing are applied to solve MAED problem. These metaheuristic techniques for
MAED problem are evaluated on three different test systems, both small and large, involving varying degree
of complexity and the results are compared against each other.
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1 Introduction
Economic dispatch (ED) is one of the important
optimization problems in power system operation. ED
allocates the load demand among the committed genera-
tors most economically while satisfying the physical and
operational constraints in a single area. Generally, the
generators are divided into several generation areas
interconnected by tie-lines. Multi-area economic dispatch
(MAED) is an extension of economic dispatch. MAED
determines the generation level and interchange
power between areas such that total fuel cost in all
areas is minimized while satisfying power balance
constraints, generating limits constraints and tie-line
capacity constraints.
The economic dispatch problem is frequently solved

without considering transmission constraints. However,
some researchers have taken transmission capacity
constraints into account. Shoults et al. [1] solved
economic dispatch problem considering import and
export constraints between areas. This study provides a
complete formulation of multi-area generation sched-
uling, and a framework for multi-area studies. Romano
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et al. [2] presented the Dantzig–Wolfe decomposition
principle to the constrained economic dispatch of
multi-area systems. An application of linear program-
ming to transmission constrained production cost ana-
lysis was proposed in Ref. [3]. Helmick et al. [4] solved
multi-area economic dispatch with area control error.
Wang and Shahidehpour [5] proposed a decomposition
approach for solving multi-area generation scheduling
with tie-line constraints using expert systems. Network
flow models for solving the multi-area economic dispatch
problem with transmission constraints have been pro-
posed by Streiffert [6]. An algorithm for multi-area eco-
nomic dispatch and calculation of short range margin cost
based prices has been presented by Wernerus and Soder
[7], where the multi-area economic dispatch problem was
solved via Newton–Raphson’s method. Yalcinoz and Short
[8] solved multi-area economic dispatch problems by
using Hopfield neural network approach. Jayabarathi et al.
[9] solved multi-area economic dispatch problems with tie
line constraints using evolutionary programming. The dir-
ect search method for solving economic dispatch problem
considering transmission capacity constraints was pre-
sented in Ref. [10]. Chen [11] develops a hybrid approach
of combining sequential dispatch with a direct search
method to deal with the multi-product and multi-area
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electricity market dispatch problem. But these methods
did not consider transmission loss.
With the emergence of metaheuristic techniques,

attention has been gradually shifted to applications of such
technology-based approaches to handle the complexity in-
volved in real world problems. Metaheuristic techniques
have been given much attention by many researchers due
their ability to seek for the near global optimal solution.
This paper investigates the applicability of the following

four metaheuristic techniques in the MAED problem: dif-
ferential evolution (DE), evolutionary programming (EP),
genetic algorithm (GA), and simulated annealing (SA).
Here, three types of MAED problems have been

considered. These are A) multi area economic dispatch with
quadratic cost function prohibited operating zones and trans-
mission losses (MAEDQCPOZTL) B) multi area economic
dispatch with valve point loading (MAEDVPL) C) multi area
economic dispatch with valve point loading multiple fuel
sources and transmission losses (MAEDVPLMFTL).
The metaheuristic techniques are evaluated against three

different test systems for comparison with each other.

2 Problem formulation
The objective of MAED is to minimize the total cost of
supplying loads to all areas while satisfying power
balance constraints, generating limits constraints and
tie-line capacity constraints.
Three different types of MAED problems have been

considered.

2.1 MAEDQCPOZTL
The objective function Ft, total cost of committed gener-
ators of all areas, of MAED problem may be written as

Ft ¼
XΝ
i¼1

XΜi

j¼1

Fij Ρij
� � ¼XΝ

i¼1

XΜi

j¼1

aij þ bijΡij þ cijΡij2

ð1Þ

where Fij(Ρij) is the cost function of jth generator in area
i and is usually expressed as a quadratic polynomial; aij,
bij and cij are the cost coefficients of jth generator in
area i; N is the number of areas, Μi is the number of
committed generators in area i; Ρij is the real power
output of jth generator in area i. The MAED problem
minimizes Ft subject to the following constraints

2.1.1 Real power balance constraint

XΜi

j¼1

Ρij ¼ ΡDi þ ΡLi þ
X
k;k≠i

Τik i∈Ν ð2Þ

The transmission loss ΡLi of area i may be expressed
by using B-coefficients as
ΡLi ¼
XΜi

l¼1

XΜi

j¼1

ΡijΒiljΡil þ
XΜi

j¼1

Β0ijΡij þ Β00i ð3Þ

where ΡDi is the real power demand of area i; Τik is the
tie line real power transfer from area i to area k. Τik is
positive when power flows from area i to area k and Τik

is negative when power flows from area k to area i.

2.1.2 Tie line capacity constraints
The tie line real power transfer Τik from area i to area k
should not exceed the tie line transfer capacity for
security consideration.

−Τmax
ik ≤Τik≤Τmax

ik ð4Þ

where Τmax
ik is the power flow limit from area i to area k

and - Τmax
ik is the power flow limit from area k to area i.

2.1.3 Real power generation capacity constraints
The real power generated by each generator should be
within its lower limit Ρmin

ij and upper limit Ρmax
ij , so that

Ρmin
ij ≤Ρij≤Ρmax

ij i∈Ν and j∈Μi ð5Þ

2.1.4 Prohibited operating zone
The prohibited operating zones are the range of power
output of a generator where the operation causes undue
vibration of the turbine shaft bearing caused by opening
or closing of the steam valve. Normally operation is
avoided in such regions. The feasible operating zones of
unit can be described as follows:

Ρmin
ij ≤Ρij≤Ρl

ij;1

Ρuij;m−1≤Ρij≤Ρ
l
ij;m ; m ¼ 2; 3;…; nij

Ρu
ij;nij≤Ρij≤Ρij

max

ð6Þ

where m represents the number of prohibited operating
zones of j the generator in area i. Ρuij;m−1 is the upper

limit of (m − 1) th prohibited operating zone of j the
generator in area i. Ρlij;m is the lower limit of mth prohib-

ited operating zone of j the generator in area i. Total
number of prohibited operating zone of j the generator
in area i is nij.

2.2 MAEDVPL
To model the effect of valve-points, a recurring rectified
sinusoid contribution is added to the quadratic function
[12]. The fuel cost function considering valve-point load-
ings of the generator is given as
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Ft ¼
XΝ
i¼1

XΜi

j¼1

Fij Ρij
� � ¼XΝ

i¼1

XΜi

j¼1

aij þ bijΡij þ cijΡ
2
ij

þ dij � sin eij � Ρmin
ij −Ρij

� �n o��� ���
ð7Þ

where dij and eij are cost coefficients of j th generator in
area i due to valve-point effect. The objective of
MAEDVPL is to minimize Ft subject to the constraints
given in (2), (4) and (5). Here transmission loss (ΡL) is
not considered.

2.3 MAEDVPLMFTL
Since generators are practically supplied with multi-fuel
sources [13], each generator should be represented with
several piecewise quadratic functions superimposed sine
terms reflecting the effect of fuel type changes and the gen-
erator must identify the most economical fuel to burn. The
fuel cost function of the j th generator in area i with ΝF fuel
types considering valve-point loading is expressed as

Fij Ρij
� � ¼ aijm þ bijmΡij þ cijmΡij

2

þ dijm � sin eijm � Ρmin
ijm −Ρij

� �n o��� ��� ð8Þ

if Ρmin
ijm ≤Ρij≤Ρmax

ijm for fuel type m and m = 1, 2,…,ΝF

The objective function Ft is given by

Ft ¼
XΝ
i¼1

XΜi

j¼1

Fij Ρij
� � ð9Þ

The objective function Ft is to be minimized subject to
the constraints given in (2), (4) and (5).

3 Determination of generation level of slack
generator
Μi committed generators in area i deliver their power out-
put subject to the power balance constraint (2), tie line
capacity constraints (4) and the respective generation cap-
acity constraints (5). Assuming the power loading of first
(Μi − 1) generators are known, the power level of the Μi

th generator (i.e. the slack generator) is given by

ΡiΜi ¼ ΡDi þ ΡLi þ
X
k;k≠i

Τik−
XΜi−1

j¼1

Ρij ð10Þ

The transmission loss ΡLi is a function of all generator
outputs including the slack generator and it is given by
ΡLi ¼
XΜi−1

l¼1

XΜi−1

j¼1

ΡijΒiljΡil þ 2ΡiΜi

XΜi−1

j¼1

ΒiΜi jΡij

 !

þΒiΜiΜiΡ
2
iΜi

þ
XΜi−1

j¼1

Β0ijΡij þ Β0iΜiΡiΜi þ Β00i

ð11Þ

Expanding and rearranging, Eq. (10) becomes

ΒiΜiΜiΡ
2
iΜi

þ 2
XΜi−1

j¼1

ΒiΜi jΡij þ Β0iΜi−1

 !
ΡiΜi

þ
 
ΡDi þ

X
k;k≠i

Τik þ
XΜi−1

j¼1

XΜi−1

l¼1

ΡijΒiljΡil

þ
XΜi−1

j¼1

Β0ijΡij−
XΜi−1

j¼1

Ρij þ Β00i

!
¼ 0

ð12Þ
The loading of the slack generator (i.e. Μi th) can then

be found by solving Eq. (12) using standard algebraic
method

4 Metaheuristic techniques
Several metaheuristic techniques have evolved in recent
past that facilitate to solve optimization problems which
were previously difficult or impossible to solve. These tech-
niques include differential evolution, evolutionary program-
ming, genetic algorithm, simulated annealing, etc. Reports
of applications of each of these techniques have been widely
published. The most important advantage of metaheuristic
techniques lies in the fact that they are not limited by re-
strictive assumptions about the search space like continuity,
existence of derivative of objective function, etc.
These methods share some similarities. The DE is

introduced first, and followed by EP, GA and SA.

4.1 Differential evolution
Differential Evolution (DE) [14] is a type of evolutionary
algorithm originally proposed by Price and Storn [15]
for optimization problems over a continuous domain.
DE is exceptionally simple, significantly faster and ro-
bust. The basic idea of DE is to adapt the search during
the evolutionary process. At the start of the evolution,
the perturbations are large since parent populations are
far away from each other. As the evolutionary process
matures, the population converges to a small region and
the perturbations adaptively become small. As a result,
the evolutionary algorithm performs a global exploratory
search during the early stages of the evolutionary
process and local exploitation during the mature stage of
the search. In DE the fittest of an offspring competes
one-to-one with that of corresponding parent which is
different from other evolutionary algorithms. This one-
to-one competition gives rise to faster convergence rate.
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Price and Storn gave the working principle of DE with
simple strategy in [14]. Later on, they suggested ten dif-
ferent strategies of DE [15]. Strategy-7 (DE/rad/1/bin) is
the most successful and widely used strategy. The key
parameters of control in DE are population size (NP),
scaling factor (F) and crossover constant (CR). The
optimization process in DE is carried out with three
basic operations: mutation, crossover and selection. The
DE algorithm is described as follows:

4.1.1 Initialization
The initial population of NP vectors is randomly selected
based on uniform probability distribution for all vari-
ables to cover the entire search uniformly. Each individ-
ual Χi is a vector that contains as many parameters as
the problem decision variables D. Random values are
assigned to each decision parameter in every vector ac-
cording to:

Χ0
ijeU Χmin

j ;Χmax
j

� �
ð13Þ

where i = 1,….,NP and j = 1,….,D; Χmin
j and Χmax

j are the

lower and upper bounds of the j th decision variable; U

Χmin
j ;Χmax

j

� �
denotes a uniform random variable ranging

over Χmin
j ;Χmax

j

h i
. Χ0

ij is the initial j th variable of i th popu-

lation. All the vectors should satisfy the constraints. Evalu-
ate the value of the cost function f Χ0

i

� �
of each vector.

4.1.2 Mutation
DE generates new parameter vectors by adding the weighted
difference vector between two population members to a
third member. For each target vector Χg

i at g th generation

the noisy vector Χ=g
i is obtained by

Χ=g
i ¼ Χg

a þ SF Χg
b−Χ

g
c

� �
; i∈ΝΡ ð14Þ

where Χg
a
a , Χg

b and Χg
c are selected randomly from ΝΡ

vectors at g th generation and a ≠ b ≠ c ≠ i. The scaling
factor (SF), in the range 0 < SF ≤ 1.2, controls the amount
of perturbation added to the parent vector. The noisy
vectors should satisfy the constraint.

4.1.3 Crossover
Perform crossover for each target vector Χg

i with its noisy

vector Χ=g
i and create a trial vector Χ==g

i such that

Χ==g
i ¼ Χ

i=g ; if ρ≤CR

Χg
i ; Otherwise

8<: ; i∈ΝΡ ð15Þ

where ρ is an uniformly distributed random number
within [0, 1]. The crossover constant (CR), in the range
0 ≤ CR ≤ 1, controls the diversity of the population and
aids the algorithm to escape from local optima.

4.1.4 Selection
Perform selection for each target vector, Χg

i by compar-

ing its cost with that of the trial vector, Χ==g
i . The vector

that has lesser cost of the two would survive for the next
generation.

Χgþ1
i ¼ Χ==g

i
; if f Χ==g

i

� �
≤f Χg

i

� �
Χg
i ; otherwise ; i∈ΝΡ

8<:
ð16Þ

The process is repeated until the maximum number of
generations or no improvement is seen in the best indi-
vidual after many generations.

4.2 Evolutionary programming
Evolutionary Programming (EP) [16] is a technique in
the field of evolutionary computation. It seeks the opti-
mal solution by evolving a population of candidate solu-
tions over a number of generations or iterations. During
each iteration, a second new population is formed from
an existing population through the use of a mutation
operator. This operator produces a new solution by
perturbing each component of an existing solution by a
random amount. The degree of optimality of each of the
candidate solutions or individuals is measured by their
fitness, which can be defined as a function of the object-
ive function of the problem. Through the use of a com-
petition scheme, the individuals in each population
compete with each other. The winning individuals form
a resultant population, which is regarded as the next
generation. For optimization to occur, the competition
scheme must be such that the more optimal solutions
have a greater chance of survival than the poorer solu-
tions. Through this the population evolves towards the
global optimal point. The algorithm is described as
follows:

1) Initialization: The initial population of control
variables is selected randomly from the set of
uniformly distributed control variables ranging over
their upper and lower limits. The fitness score fi is
obtained according to the objective function and the
environment.

2) Statistics: The maximum fitness fmax, minimum
fitness fmin, the sum of fitness ∑f, and average fitness
favg of this generation are calculated.

3) Mutation: Each selected parent, for example Χi, is
mutated and added to its population with the
following rule:



Pattanaik et al. Protection and Control of Modern Power Systems  (2017) 2:17 Page 5 of 11
Χiþm;j ¼ Χij þ N 0; β xj−xj

� � f i
f max

� �
; j∈n; i∈ΝΡ

ð17Þ
where n is the number of decision variables in an

individual, ΝΡ is the population size, Χij denotes the
j th element of the i th individual; N(μ, σ2)
represents a Gaussian random variable with mean μ
and variance σ2; fmax is the maximum fitness of the
old generation which is obtained in statistics; xj and
xj are respectively maximum and minimum limits of
the j th element; and β is the mutation scale, 0 < β ≤
1, that could be adaptively decreased during
generations. If any mutated value exceeds its limit, it
will be given the limit value. The mutation process
allows an individual with larger fitness to produce
more offspring for the next generation.

4) Competition: Several individuals (k) which have the
best fitness are kept as the parents for the next
generation. Other individuals in the combined
population of size (2ΝΡ − k) have to compete with
each other to get their chances for the next
generation. A weight value wi of the i th individual is
calculated by the following competition:

wi ¼
XΝt

t¼1

wi;t ð18Þ

where Νt is the competition number generated

randomly; wi,t is either 0 for loss or 1 for win as the
i th individual competes with a randomly selected
(rth) individual in the combined population. The
value of wi,t is given in the following equation:
wi;t ¼ 1 if f i < f r
0 Otherwise

	
ð19Þ

where fr is the fitness of randomly selected r th

individuals, and fi is the fitness of the i th individual.
When all 2ΝΡ individuals, get their competition
weights, they will be ranked in a descending order
according to their corresponding value wi. The first
m individuals are selected along with their
corresponding fitness fi to be the bases for the next
generation. The maximum, minimum and the
average fitness and the sum of the fitness of the
current generation are then calculated in the
statistics.

5) Convergence test: If the convergence condition is
not met, the mutation and competition will run
again. The maximum generation number can be
used for convergence condition. Other criteria,
such as the ratio of the average and the
maximum fitness of the population is computed
and generations are repeated until
f avg=f max

n o
≥δ ð20Þ

where δ should be very close to 1, which represents

the degree of satisfaction. If the convergence has
reached a given accuracy, an optimal solution has
been found for an optimization problem.
4.3 Genetic algorithm
Genetic algorithm [17] is based on the mechanics of nat-
ural selection. An initial population of candidate solu-
tions is created randomly. Each of these candidate
solutions is termed as individual. Each individual is
assigned a fitness, which measures its quality. During
each generation of the evolutionary process, individuals
with higher fitness are favored and more probabilities to
be selected as parents. After parents are selected for
reproduction, they produce children via the processes of
crossover and mutation. The individuals formed during
reproduction explore different areas of the solution
space. These new individuals replace lesser-fit individ-
uals of the existing population.
Due to difficulties of binary representation when deal-

ing with continuous search space with large dimensions,
the proposed approach has been implemented using
real-coded genetic algorithm (RCGA) [18]. The simu-
lated Binary Crossover (SBX) and polynomial mutation
are explained as follows.

4.3.1 Simulated binary crossover (SBX) operator
The procedure of computing child populations c1 and c2
from two parent populations y1 and y2 under SBX oper-
ator as follows:

1. Create a random number u between 0 and 1.
2. Find a parameter γ using a polynomial probability

distribution as follows:

γ ¼
uαð Þ1= ηcþ1ð Þ

; if u≤
1
α

1= 2−uαð Þð Þ1= ηcþð Þ; otherwise

8>><>>:
ð21Þ

where α ¼ 2−β− ηcþ1ð Þ and

β ¼ 1þ 2

y2−y1
min y1−ylð Þ; yu−y2ð Þ½ �

Here, the parameter y is assumed to vary in [yl, yu].
Here, the parameter ηc is the distribution index for
SBX and can take any non-negative value. A small
value of ηc allows the creation of child populations far
away from parents and a large value restricts only near-
parent populations to be created as child populations.

3. The intermediate populations are calculated as follows:



Table 1 Simulation results for test system 1

DE SA EP RCGA

Ρ1,1 (MW) 500.0000 500.0000 500.0000 500.0000

Ρ1,2 (MW) 200.0000 200.0000 200.0000 200.0000

Ρ1,3 (MW) 150.0000 150.0000 149.9919 149.6328

Ρ2,1 (MW) 204.3341 204.2157 206.4493 205.9398

Ρ2,2 (MW) 154.7048 155.0575 154.8892 155.8322

Ρ2,3 (MW) 67.5770 67.3516 65.2717 65.2209

Τ12 (MW) 82.7731 82.7731 82.7652 82.4135

ΡL1 (MW) 9.4269 9.4269 9.4267 9.4193

ΡL2 (MW) 4.1890 4.1979 4.1754 4.2064

Cost ($/h) 12255.39 12255.39 12255.43 12256.23

CPU time (second) 17.6875 14.7656 21.3281 24.2031
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cp1 ¼ 0:5 y1 þ y2ð Þ−γ y2−y1j jð Þ½ �
cp2 ¼ 0:5 y1 þ y2ð Þ þ γ y2−y1j jð Þ½ �

ð22Þ

Each variable is chosen with a probability pc and the
Fig
above SBX operator is applied variable-by-variable.
4.3.2 Polynomial mutation operator
A polynomial probability distribution is used to create a
child population in the vicinity of a parent population
under the mutation operator. The following procedure is
used:

1. Create a random number u between 0 and 1.
2. Calculate the parameter δ as follows:
0 10 20 30 40
1.2255

1.226

1.2265

1.227

1.2275

1.228

1.2285

1.229

1.2295

1.23

1.2305
x 10

4

)$(tso
C

Ge

. 1 Cost convergence characteristic of test system 1
δ ¼
2uþ 1−2uð Þ 1−ϕð Þ ηmþ1ð Þh i 1

ηm þ 1
� �

−1; if u≤0:5

1− 2 1−uð Þ þ 2 u−0:5ð Þ 1−ϕð Þ ηmþ1ð Þh i 1

ηm þ 1
� �

; otherwise

8>>>>><>>>>>:
ð23Þ

where φ ¼ min cp−ylð Þ; yu−cpð Þ½ �

yu−ylð Þ

The parameter ηm is the distribution index for
mutation and takes any non-negative value.

3. Calculate the mutated child as follows:

c1 ¼ cp1 þ δ yu−ylð Þ

c2 ¼ cp2 þ δ yu−ylð Þ
The perturbance in the population can be adjusted by
50
neratio
varying ηm and pm with generations as given below:
ηm ¼ ηmmin þ gen ð24Þ

pm ¼ 1
n
þ gen
genmax

1−
1
n

� �
ð25Þ

where ηmmin is the user defined minimum value for

ηm, pm is the probability of mutation, and n is the
number of decision variables
4.4 Simulated annealing
Simulated annealing [19] is a powerful optimization
technique which exploits the resemblance between a
minimization process and the cooling of molten metal. The
physical annealing process is simulated in the simulated
60 70 80 90 100
n

DE

SA

EP

RCGA



Table 2 Simulation results for test system 2

Power (MW) DE SA EP RCGA

Fuel Fuel Fuel Fuel

Ρ1,1 (MW) 225.9431 2 228.1730 2 223.8491 2 239.0958 2

Ρ1,2 (MW) 211.1594 1 213.3402 1 209.5759 1 216.1166 1

Ρ1,3 (MW) 489.9216 2 482.8722 2 496.0680 2 484.1506 2

Ρ1,4 (MW) 240.6232 3 242.6425 3 237.9954 3 240.6228 3

Ρ2,1 (MW) 254.0397 1 253.5059 1 259.4299 1 259.6639 1

Ρ2,2 (MW) 235.4927 3 236.5760 3 228.9422 3 219.9107 3

Ρ2,3 (MW) 263.8837 1 266.6356 1 264.1133 1 254.5140 1

Ρ3,1 (MW) 237.0006 3 234.3130 3 238.2280 3 231.3565 3

Ρ3,2 (MW) 328.7373 1 325.9516 1 331.2982 1 341.9624 1

Ρ3,3 (MW) 248.8607 1 251.4034 1 246.6025 1 248.2782 1

Τ21 (MW) 99.8288 100 100 93.1700

Τ31 (MW) 99.7334 99.8797 100 93.8739

Τ32 (MW) 31.2615 28.1853 32.5231 43.7824

ΡL1 (MW) 17.2095 16.9000 17.4884 17.0297

ΡL2 (MW) 9.8488 9.9028 10.0085 9.7010

ΡL3 (MW) 8.6037 8.6030 8.6056 8.9408

Cost ($/h) 653.9995 654.0916 655.1716 657.3325

CPU time (second) 95.0351 10.0156 108.0625 133.8438
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annealing (SA) technique for the determination of global or
near-global optimum solutions for optimization problems. In
this algorithm, a parameter Τ0, called temperature, is defined.
Starting from a high temperature, a molten metal is cooled
slowly until it is solidified at a low temperature. The iteration
number in the SA technique is analogous to the temperature
0 50 100
650

655

660

665

670

675

680

685

)$(tso
C

Gen

Fig. 2 Cost convergence characteristic of test system 2
level. During each iteration, a candidate solution is generated.
If this solution is a better solution, it will be accepted and
used to generate yet another candidate solution. If it is a dete-
riorated solution, the solution will be accepted when its prob-
ability of acceptance Ρr(Δ) as given by Eq. (26) is greater than
a randomly generated number between 0 and 1:
150 200 250 300
eration

DE

SA
EP

RCGA



Table 3 Simulation results for test system 3

Power (MW) DE SA EP RCGA Power (MW) DE SA EP RCGA

Ρ1,1 111.5448 110.9120 107.6644 95.7552 Ρ3,4 523.4073 523.3366 525.7752 518.1120

Ρ1,2 111.7092 111.8740 112.0673 88.5828 Ρ3,5 523.7703 525.5247 531.2092 538.1994

Ρ1,3 98.2429 110.2589 91.8132 97.6063 Ρ3,6 523.5424 523.2794 513.5659 527.4775

Ρ1,4 179.8834 179.7351 175.3171 126.4966 Ρ3,7 10.1621 10.0002 11.3612 24.4133

Ρ1,5 95.9500 88.8739 92.4242 71.0127 Ρ3,8 10.1326 10.0006 10.0000 28.9856

Ρ1,6 139.3533 68.0000 112.5634 116.3866 Ρ3,9 10.6366 10.0006 10.0000 28.8571

Ρ1,7 259.3395 184.9322 257.5370 244.5857 Ρ3,10 88.1189 93.2065 78.3523 87.9016

Ρ1,8 285.3569 285.0432 297.3619 210.6920 Ρ4,1 161.2220 190.0000 162.4480 159.7482

Ρ1,9 284.9627 284.6015 285.2035 236.1685 Ρ4,2 189.5668 189.9990 166.3508 153.6255

Ρ1,10 130.2217 130.0008 134.5862 130.1286 Ρ4,3 189.9240 159.7546 190.0000 160.4706

Ρ2,1 243.6005 168.6194 162.4313 367.4862 Ρ4,4 165.6621 165.6736 178.4541 169.9359

Ρ2,2 95.3890 318.3986 217.8387 297.9501 Ρ4,5 165.4321 164.8248 168.0752 168.5220

Ρ2,3 214.5171 304.5197 125.0000 394.9246 Ρ4,6 164.9868 196.1794 174.4529 172.2638

Ρ2,4 394.0808 394.2792 384.0187 370.3473 Ρ4,7 109.8137 89.1143 77.3875 91.2423

Ρ2,5 394.2481 469.0618 397.6902 455.7123 Ρ4,8 109.7935 89.1147 90.1059 86.4778

Ρ2,6 394.4360 304.5195 407.4993 393.9673 Ρ4,9 90.1543 104.7206 109.5654 88.3627

Ρ2,7 489.9552 489.2801 500.0000 424.1994 Ρ4,10 459.1140 458.7992 549.0335 279.2691

Ρ2,8 488.8885 489.2803 480.8874 484.5498 Τ12 172.0652 192.6532 200 −71.7855

Ρ2,9 511.4713 511.2790 524.8487 528.4148 Τ31 −36.3060 160.6028 17.5885 161.9336

Ρ2,10 511.4125 511.2805 499.7857 511.3403 Τ32 191.1128 −46.9736 200 95.2833

Ρ3,1 523.2896 524.8208 523.4522 525.4497 Τ41 86.8070 52.8188 90.8733 −76.1340

Ρ3,2 523.2950 523.2802 526.5051 510.7391 Τ42 98.8231 93.8021 100 −52.3900

Ρ3,3 523.4129 433.6204 537.3675 533.6399 Τ43 45.0391 86.5590 100 83.4418

Total cost ($/h) 121794.8 123337.1 123591.9 128046.5

CPU time (second) 134.8125 29.2813 144.5000 160.5313
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Ρr Δð Þ ¼ 1= 1þ exp Δ=Τvð Þð Þ ð26Þ

where Δ is the amount of deterioration between the new
and the current solutions and Τv is the temperature at which
the new solution is generated. Accepting deteriorated solu-
tions in the above manner enables the SA solution to ‘jump’
out of the local optimum solution points and to seek the glo-
bal optimum solution. In forming the new solution the
current solution is perturbed [20] according to the Gaussian
probability distribution function (GPDF). The mean of the
GPDF is taken to be the current solution, and its standard
deviation is given by the product of the temperature and a
scaling factor σ. The value of σ is less than one, and together
with the value of temperature, it governs the size of the
neighborhood space of the current solution and hence the
amount of perturbation. The amount of perturbation is
dependent upon the temperature when σ is kept at a con-
stant value. In each iteration, the procedure for generating
and testing the candidate solution is repeated for a specified
number of trials so that thermal equilibrium is reached for
each temperature. The last accepted candidate solution is
then taken as the starting solution for the generation of can-
didate solutions in the next iteration. Simulated annealing
with a slow cooling schedule usually has larger capacity to
find the optimal solution than that of a fast cooling schedule.
The reduction of the temperature in successive iterations is
governed by the following geometric function [19]

Τv ¼ r v−1ð ÞΤ0 ð27Þ

where v is the iteration number and r is temperature reduc-
tion factor. Τ0 is the initial temperature, the value of which
can be set arbitrarily or estimated using the method de-
scribed in reference [20]. The iterative process is terminated
when there is no significant improvement in the solution
after a prespecified number of iterations. It can also be termi-
nated when the maximum number of iterations is reached.

4.5 Simulation results
A comparative study is performed for the four meta-
heuristic techniques by solving the MAED problem for
three different test systems. All metaheuristic techniques
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for the MAED problems are implemented by using
MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz).
The initial temperature (Τ0) of SA algorithm has been de-

termined by using the procedures described in [20]. As per
guideline [19], the value of r lies in the range from 0.80 to
0.99. For seeking the optimal solution, the value of r is re-
quired to be set close to 0.99 so that a slow cooling process is
simulated. The appropriate setting of r is set by experimenting
with its value in the range from 0.95 to 0.99, and this value is
found to be 0.98. Number of trials at each temperature has
been taken 30. In this paper, iterative process is terminated
when the maximum number of iterations is reached.

4.5.1 Test system 1
This system consists of two areas. Each area consists of three
generators with prohibited operating zones. Transmission
loss is considered here. The generator data has modified
from [21]. The generator data and B-coefficients are given in
the Appendix 1. The percentage of the total load demand in
area 1 is 60% and 40% in area 2. The total load demand is
1263 MW and power flow limit of the system is 100 MW.
The problem is solved by using DE, EP, RCGA, and SA.

In case of DE, the population size, scaling factor, and
crossover rate have been selected as 100, 0.75, and 1.0 re-
spectively for the test system under consideration. The
population size and scaling factor have been selected as
100, and 0.1 respectively in case of EP. In case of RCGA,
the population size, crossover and mutation probabilities
have been selected as 100, 0.9 and 0.2 respectively.
Maximum number of generations has been selected 100 for

all the four metaheuristic techniques discussed in this paper.
Results obtained from the four metaheuristic techniques
i.e. DE, EP, RCGA, and SA have been summarized in
Table 1. Figure 1 gives the comparison of convergence of
minimum total cost obtained by DE, EP, RCGA, and SA.

4.5.2 Test system 2
This system comprises ten generators with valve-point
loading and multi-fuel sources having three fuel options.
Transmission loss is considered here. The generator data
has been taken from [13]. The total load demand is 2700
MW. The ten generators are divided into three areas. Area
1 consists of the first four units; area 2 includes the next
three units and area 3 includes the last three units. The
load demand in area 1 is assumed as 50% of the total de-
mand. The load demand in area 2 is assumed as 25% and
in area 3 is taken as 25% of the total demand. The power
flow limit from area 1 to area 2 or from area 2 to area 1 is
100 MW. The power flow limit from area 1 to area 3 or
from area 3 to area 1 is 100 MW. Also the power flow
limit from area 2 to area 3 or from area 3 to area 2 is 100
MW. The B-coefficients are given in the Appendix 2.
The problem is solved by using four metaheuristic

techniques i.e. DE, EP, RCGA, and SA.
In case of DE, the population size, scaling factor, and cross-

over rate have been selected as 200, 0.75, and 1.0 respectively
for the test system under consideration. The population size
and scaling factor have been selected as 100, and 0.1 respect-
ively in case of EP. In case of RCGA, the population size,
crossover and mutation probabilities have been selected as
100, 0.9 and 0.2 respectively. Maximum number of genera-
tions has been selected 300 for DE, EP, RCGA, and SA.



Table 4 Data for 2 area system

Generator ij aij bij cij Pmin
ij Ρmax

ij Prohibited zones

$/h $/MWh $/(MW)2h MW MW MW

G1,1 550 8.10 0.00028 100 500 [210 240] [350 380]

G1,2 350 7.50 0.00056 50 200 [90 110] [140 160]

G1,3 310 8.10 0.00056 50 150 [80 90] [110 120]

G2,1 240 7.74 0.00324 80 300 [150 170] [210 240]

G2,2 200 8.00 0.00254 50 200 [90 110] [140 150]

G2,3 126 8.60 0.00284 50 120 [75 85] [100 105]
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Results obtained from DE, EP, RCGA and RCGA have
been presented in Table 2. The cost convergence charac-
teristic of this test system obtained from DE, EP, RCGA
and SA is shown in Fig. 2.

4.5.3 Test system 3
This system comprises forty generators with valve-point load-
ing. The generator data has been taken from [22]. The total
load demand is 10500 MW. The forty generators are divided
into four areas. Area 1 includes first ten units and 15% of the
total load demand. Area 2 has second ten generators and
40% of the total load demand. Area 3 consists of third ten
generators and 30% of the total load demand. Area four in-
cludes last ten generators and 15% of the total load demand.
The power flow limit from area 1 to area 2 or from area 2 to
area 1 is 200 MW. The power flow limit from area 1 to area
3 or from area 3 to area 1 is 200 MW. The power flow limit
from area 2 to area 3 or from area 3 to area 2 is 200 MW.
The power flow limit from area 4 to area 1 or from area 1 to
area 4 is 100 MW. The power flow limit from area 4 to area
2 or from area 2 to area 4 is 100 MW. The power flow limit
from area 4 to area 3 or from area 3 to area 4 is 100 MW.
Transmission loss is neglected here.
Four metaheuristic techniques i.e. DE, EP, RCGA, and

SA have been used to solve the problem.
The population size, scaling factor, and crossover rate have

been been selected as 400, 0.75 and 1.0 respectively in case of
DE. In EP, the population size and scaling factor have been se-
lected 200 and 0.1 respectively. In case of RCGA, the popula-
tion size, crossover and mutation probabilities have been
selected as 200, 0.9 and 0.2 respectively. Maximum number of
generations has been selected 500 for DE, EP, RCGA and SA.
Results obtained from DE, EP, RCGA and SA have been

depicted in Table 3. The cost convergence characteristic
of this test system obtained from DE, EP, RCGA and SA is
shown in Fig. 3.
From Tables 1, 2 and 3, it can be inferred that, the low-

est minimum total cost amongst the four is achieved by
DE, followed by SA. Minimum total cost obtained by EP
is more than DE and SA. RCGA is the worst performer.
The CPU time requirement is least in case of SA and
highest in the case of RCGA amongst the four metaheur-
istic techniques discussed in the paper.

5 Conclusion
In this paper, a comparison analysis has been done for the
four metaheuristic techniques viz., differential evolution,
evolutionary programming, real coded genetic algorithm and
simulated annealing technique for multi-area economic
dispatch problem considering transmission losses, multiple
fuels, valve-point loading and prohibited operating zones
with respect to minimum cost and CPU time. Differential
evolution achieves the lowest minimum cost and SA requires
least CPU time amongst the four metaheuristic techniques.
6 Appendix 1
The transmission loss formula coefficients of two-area
system are:

B1 ¼
17
12
7

12
14
9

7
9
31

24 35 X10−6

B01 ¼ −0:3908 −0:1297 0:7047½ � X10−3

B001 ¼ 0:045

B2 ¼
24
−6
−8

−6
129
−2

−8
−2
150

24 35 X10−6

B02 ¼ 0:0591 0:2161 −0:6635½ � X10−3

B002 ¼ 0:056

7 Appendix 2
The transmission loss formula coefficients of three-area
system are:

B1 ¼
8:70
0:43
−4:61
0:36

0:43
8:30
−0:97
0:22

−4:61
−0:97
9:00
−2:00

0:36
0:22
−2:00
5:30

2664
3775 X10−5

B01 ¼ −0:3908 −0:1297 0:7047 0:0591½ � X10−3

B001 ¼ 0:056

B2 ¼
8:60
−0:80
0:37

−0:80
9:08
−4:90

0:37
−4:90
8:24

24 35 X10−5

B02 ¼ 0:2161 −0:6635 0:5034½ � X10−3

B002 ¼ 0:045
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B3 ¼
1:20
−0:96
0:56

−0:96
4:93
−0:30

0:56
−0:30
5:99

24 35 X10−5

B03 ¼ −0:3216 0:4635 0:3503½ � X10−3

B003 ¼ 0:055

Funding
There is NO Funding Information available for this manuscript.

Authors’ contributions
JKP makes substantial contributions to conception, design and acquisition of
data analysis and interpretation of data. JKP drafted the article and revising it
thoroughly for preparation of the manuscript for the esteemed journal. Also he
did the simulation part by using different test data for three different test
systems. As a corresponding author he takes the primary responsibility for
communication of the journal during the manuscript submission, peer review,
publication process, and typically ensures that all the journal’s administrative
requirements, such as providing details of authorship. JKP will be available
throughout the submission and peer review process to respond to editorial
queries in a timely manner. Also he will be available after publication to
respond to critiques of the work and cooperate with any requests from the
journal for data or additional information should be answered about the paper
arise after publication. JKP also agrees to be accountable for all aspects of the
work in ensuring that questions related to the accuracy or integrity of any part
of the work are appropriately investigated and resolved. MB participated in the
peer review process of the manuscript and involved in the test data
preparation. She reviewed the manuscript thoroughly. DPD participated in the
peer review process of the manuscript and to compare the performance of the
proposed method with that of other evolutionary methods. All authors read
and approved the final manuscript.

Authors’ information
Jagat Kishore Pattanaik received the Master’s degree in Electrical Engineering
in 2011 from Jadavpur University, Kolkata, India. He is currently working
towards the Ph.D degree in the Department of Power Engineering, Jadavpur
University. His research interest is Soft computing application in Power
system Engineering.
Dr. Mousumi Basu received the Ph.D. degree from Jadavpur University,
Kolkata, India. She is currently working as an Associate Professor in the
Department of Power Engineering, Jadavpur University. His research interest
is Power system Optimization and Soft computing technique.
Dr. Deba Prasad Dash received the Ph.D. degree from Jadavpur University,
Kolkata, India. He is currently working as a Professor in the Department of
Electrical Engineering, Orissa Engineering College, Bhubaneswar, Odisha,
India. His research interests are Power system Stability, Power system
protection & Soft computing technique.

Competing interests
We have declared that we have NO significant competing financial,
professional or personal interests that might have influenced the
performance or presentation of the work described in the manuscript.

Author details
1Department of Power Engineering, Jadavpur University, Salt Lake City,
Kolkata 700098, India. 2Electrical Engineering Department, Orissa Engineering
College, Bhubaneswar, India.

Received: 3 July 2016 Accepted: 18 April 2017

References
1. Shoults, R. R., Chang, S. K., Helmick, S., & Grady, W. M. (1980). A practical

approach to unit commitment, economic dispatch and savings allocation
for multiple-area pool operation with import/export constraints. IEEE Trans
Power Apparatus Syst., 99(2), 625–635.
2. Romano, R., Quintana, V. H., Lopez, R., & Valadez, V. (1981). Constrained
economic dispatch of multi-area systems using the Dantzig–Wolfe
decomposition principle. IEEE Trans. Power Apparatus Syst., 100(4), 2127–2137.

3. Desell, A. L., McClelland, E. C., Tammar, K., & Van Horne, P. R. (1984).
Transmission constrained production cost analysis in power system
planning. IEEE Trans Power Apparatus Syst., 103(8), 2192–2198.

4. Helmick, S. D., & Shoults, R. R. (1985). A practical approach to an interim
multi-area economic dispatch using limited computer resources. IEEE Trans
Power Apparatus Syst., 104(6), 1400–1404.

5. Wang, C., & Shahidehpour, S. M. (1992). A decomposition approach to non-
linear multi area generation scheduling with tie-line constraints using
expert systems. IEEE Transactions on Power Systems, 7(4), 1409–1418.

6. Streiffert, D. (1995). Multi-area economic dispatch with tie line constraints.
IEEE Transactions on Power Systems, 10(4), 1946–1951.

7. Wernerus, J, Soder, L (1995) Area price based multi-area economic dispatch
with tie line losses and constraints. In: IEEE/KTH Stockholm power tech
conference (pp. 710–715). Sweden

8. Yalcinoz, T., & Short, M. J. (1998). Neural networks approach for solving
economic dispatch problem with transmission capacity constraints. IEEE
Transactions on Power Systems, 13(2), 307–313.

9. Jayabarathi, T., Sadasivam, G., & Ramachandran, V. (2000). Evolutionary
programming based multi-area economic dispatch with tie line constraints.
Electric Machine and Power System, 28, 1165–1176.

10. Chen, C. L., & Chen, N. (2001). Direct Search Method for solving Economic
Dispatch Problem Considering Transmission Capacity Constraints. IEEE
Transactions on Power Systems, 16(4), 764–769.

11. Chen, C. L. (2005). Optimal generation and reserve dispatch in a multi-area
competitive market using a hybrid direct search method. Energy Conversion
and Management, 46, 2856–2872.

12. Walter, D. C., & Sheble, G. B. (1993). Genetic algorithm solution of economic
dispatch with valve point loading. IEEE Transactions on Power Systems, 8,
1325–1332.

13. Chiang, C.-L. (2005). Improved genetic algorithm for power economic
dispatch of units with valve-point effects and multiple fuels. IEEE
Transactions on Power Systems, 20(4), 1690–1699.

14. Storn, R., & Price, K. V. (1997). Differential evolution- a simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization, 11(4), 341–359.

15. Price, K. V., Storn, R., & Lampinen, J. (2005). Differential Evolution: A Practical
Approach to Global Optimization. Berlin: Springer.

16. Yang, H. T., Yang, P. C., & Huang, C. L. (1996). Evolutionary Programming
based economic dispatch for units with non-smooth fuel cost functions.
IEEE transactions on Power Systems, 11(1), 112–118.

17. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization & Machine
Learning. Reading: Addison-Wesley Publishing Company, Inc.

18. Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous
search space. Complex Systems, 9(2), 115–148.

19. Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated
annealing. Science, 22, 671–680.

20. Wong, K. P., & Fung, C. C. (1993). Simulated annealing based economic
dispatch algorithm. IEE Proceedings Generation Transmission and Distribution,
140(6), 509–515.

21. Gaing, Z.-L. (2003). Particle Swarm Optimization to Solving the Economic
Dispatch Considering the Generator Constraints. IEEE Transactions on Power
Systems, 18(3), 1187–1195.

22. Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003). Evolutionary
programming techniques for economic load dispatch. IEEE Transactions on
Evolutionary Computation, 7(1), 83–94.


	Abstract
	Introduction
	Problem formulation
	MAEDQCPOZTL
	Real power balance constraint
	Tie line capacity constraints
	Real power generation capacity constraints
	Prohibited operating zone

	MAEDVPL
	MAEDVPLMFTL

	Determination of generation level of slack generator
	Metaheuristic techniques
	Differential evolution
	Initialization
	Mutation
	Crossover
	Selection

	Evolutionary programming
	Genetic algorithm
	Simulated binary crossover (SBX) operator
	Polynomial mutation operator

	Simulated annealing
	Simulation results
	Test system 1
	Test system 2
	Test system 3


	Conclusion
	Appendix 1
	Appendix 2
	Funding
	Authors’ contributions
	Authors’ information
	Competing interests
	Author details
	References

