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Abstract

The virtual power plant (VPP) is a new and efficient solution to manage the integration of distributed energy resources
(DERs) into the power system. Considering the unpredictable output of stochastic DERs, conventional scheduling
strategies always set plenty of reserve aside in order to guarantee the reliability of operation, which is too conservative to
gain more benefits. Thus, it is significant to research the scheduling strategies of VPPs, which can coordinate the risks and
benefits of VPP operation. This paper presents a fuzzy chance-constrained scheduling model which utilizes fuzzy variables
to describe uncertain features of distributed generators (DGs). Based on credibility theory, the concept of the confidence
level is introduced to quantify the feasibility of the conditions, which reflects the risk tolerance of VPP operation. By
transforming the fuzzy chance constraints into their equivalent forms, traditional optimization algorithms can be used to

plant (VPP)

solve the optimal scheduling problem. An IEEE 6-node system is employed to prove the feasibility of the proposed
scheduling model. Case studies demonstrate that the fuzzy chance strategy is superior to conservative scheduling
strategies in realizing the right balance between risks and benefits.
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Introduction

Nowadays, due to the rising prices of fossil fuels and the
threat of climate change caused by greenhouse gases,
distributed energy resources (DERs) have drawn wide-
spread attention because of their clean and renewable
characteristics [1-3]. However, the output of DERs is
fluctuating and unpredictable. As the penetration of
intermittent renewables in the grids is increasing grad-
ually, more technical challenges need to be addressed
in the schedule and control of their operation [4-7].
Meanwhile, the liberalization of the electricity market
makes DERs inevitable. However, the small capacity,
intermittent output and the lack of appropriate inter-
action with the system operator are the biggest barriers
ahead of DERs for participation in the electricity
market. To solve these problems mentioned above, the
DERs could be aggregated as an entity which can be-
have like a conventional generator, naming the virtual
power plant (VPP) [8-10].
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In [11, 12], a VPP is defined as a coalition of DERs in-
cluding distributed generations (DGs), storage devices,
and interruptible loads. Considering the characteristics
of each DER and the impact of network, VPPs generate
one unit portfolio which can be utilized to offer services
to the system operator, and even to make contracts in
the wholesale market. Therefore, by introducing the
concept of the VPP, the visibility and controllability of
DERs for system operators will be improved consider-
ably, just the same as the conventional transmission—
connected power plants.

To realize the concept of the VPP, scholars around the
world have done lots of studies on VPPs in many aspects
[13-17], including VPP modeling methods, negotiating
behaviors in the market, bidding strategies, reliability
evaluation, management systems, and so on. Among
them, the optimal scheduling strategy of DERs in the
VPP is a hot topic. Reference [18] proposed a non-
equilibrium model which takes into account the supply
and demand balancing constraint and security constraint
of VPPs. On this basis, the strategy proposed in [19]
considered the effect of reliability and determined the
optimum hourly operating strategy of DERs by applying
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the Monte Carlo simulation method. However, these
scheduling strategies are based on the deterministic mar-
ket prices. Considering the uncertainties in prices, [20]
developed a new risk constrained scheduling for VPPs to
help the aggregator bid in the day-ahead market.

However, the optimal bidding strategy of those re-
searches mainly focused on maximizing the VPP’s profit
in different types of markets. With regard to reserve
level, these methods spare large capacity as recovery to
balance the supply and demand. Although the system
stability can be guaranteed in this deterministic way, the
obtained scheduling results are always inevitably conser-
vative. Actually, more benefits can be gained via redu-
cing the reserve capacity appropriately.

This paper proposes a fuzzy chance-constrained sched-
uling model to provide solutions for the optimal schedul-
ing strategy for VPPs based on credibility theory. In this
model, as the prediction errors of renewables are char-
acterized as fuzzy parameters, the related constraints
correspondingly contain fuzzy variables which need to
be tackled properly. By introducing the concept of the
confidence level, the feasibility of the conditions where
the fuzzy chance constraints can be satisfied is quanti-
fied, so as to characterize the risk tolerance of VPPs.
The proposed fuzzy chance model is difficult to solve
due to the incorporation of fuzzy variables. By trans-
forming the constraints containing fuzzy variables into
their equivalent forms, the chance constraints are con-
verted into deterministic constraints which consider
the fuzzy risks (or reliability) as well. Then traditional
optimization algorithms can be utilized to solve the
optimal scheduling problem, in order to achieve a com-
promise between risks and benefits.

The rest of the paper is organized as follows: the
theoretical basis of this paper is presented in Credibility
theory and fuzzy chance-constrained programming, in-
cluding credibility theory and fuzzy chance constrained
programming; the proposed VPP scheduling strategy based
on credibility theory is demonstrated in VPP scheduling
strategy based on credibility theory; solution methods used
in this paper are stated in Methods; case studies and discus-
sion are given in Case study; and finally, the conclusion is
drawn in Conclusions.

Credibility theory and fuzzy chance-constrained
programming

Distinguished from the conventional power plants, the
scheduling of VPPs is required to deal with a number
of uncertain variables from renewables and loads. The
common ways to process those uncertain variables are
categorized into determinate and indeterminate methods.
Determinate method is to set plenty of reserve aside in
order to guarantee the reliability of operation. However,
this approach is too conservative to coordinate the risks
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and benefits of VPP operation. More benefits can be ob-
tained by ignoring the small probability events and
making decisions within the scope of risk tolerance
[21]. The fuzzy chance-constrained programming
method proposed in this paper is one kind of inde-
terminate scheduling strategy.

In this approach, the decision result is allowed to vio-
late the constraints which contain fuzzy variables, but
the feasibility of satisfying the constraints should be no
less than the preset confidence level. The confidence
level is a concept which reflects the risk tolerance of
the system, or the reliability requirements of the
system when facing uncertain variables. In conclusion,
the optimal fuzzy chance-constrained scheduling strat-
egy is a compromise between risks and economic
profits. Credibility theory provides theoretical support
to solve the confidence level problem of the fuzzy
chance strategy decision, which greatly contributes to
the development and improvement of the fuzzy
chance programming theory.

Credibility theory

The concept of the fuzzy set theory was initiated by
Zadeh via the membership function [22]. In order to
measure a fuzzy event, the possibility measure is pro-
posed. Since then the possibility theory has been stud-
ied by many researchers. Although the possibility
measure has been widely used, it does not possess the
self-duality property. Thus, if the possibility measure
equals one it does not mean the event will happen
definitely, while the event may happen even though
the possibility measure is zero. So the solution to the
fuzzy decision problem has been a mathematical con-
undrum for a long time.

Credibility theory was propounded by Liu in 2004 as a
branch of mathematics for studying the fuzzy behavior
[23]. It establishes a complete axiomatic system which is
parallel with probability theory in dealing with uncer-
tainty. Based on five axioms mentioned in [23], a cred-
ibility measure is defined.

According to Liu [23], the following five axioms
should hold to ensure that the number Cr(A) has certain
mathematical properties.

Definition 2.1:

Axiom 1: Cr{®} = 1;

Axiom 2:Cr is non-decreasing, ie., if A CB, there is
always Cr{A} < Cr{B};

Axiom 3: Cr is self-dual: V A € P(®), Cr{A} + Cr{A%} = 1;
Axiom 4: VY A; € {Ay] Cr{A;} 0.5}, there is Cr{U; A;} A\
0.5 = sup, Cr{A;}.

Axiom 5: Let ©1, ©,, .., ©, be the nonempty sets
corresponding to that Cry, Cry, .., Cr,, satisfy the axioms as
respectively defined above, and let ©® = ©; x O, x..x O,
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Then, we have Cr{(0,, 0, .., 6,)} = Cr1{0:} \

Cry{65) A .. N\ Cr,{0,} for each (0,,0,, .., 0,) € &

where @ is a nonempty set; P(©) is the possibility set of
O, the element of P(O) is a fuzzy event; A is the subset
of ®; Cr(A) is a non-negative number indicating the
credibility of Event A which will occur; and * repre-
sents the minimal operator.

Accordingly, the credibility measure describes the cred-
ibility level of a fuzzy event; parallel with the confidence
level in probability theory, it satisfies the self-duality. It
means that the event whose credibility measure is 1 will
definitely occur, and similarly, the event whose credibility
measure is 0 will never happen. So credibility theory
solves the confusion caused by a subordinate degree, and
provides theoretical foundations for the fuzzy decision.

In the fuzzy decision of VPP scheduling, some defini-
tions and theorems of credibility theory are utilized, as
listed below:

Definition 2.2 (Membership Function): The member-
ship function u(x) of the fuzzy parameter £ is defined as:

u(x) = Pos{0€B|E(0)<x} (1)

Definition 2.3 (Credibility Measure): The credibility
measure can be obtained from the membership function,
which is named as the credibility inversion theorem:

sup H(X)xeA +1- sup ”(x)xeA“ (2)

Cr{€cA} = 5

Fuzzy chance-constrained programming

Fuzzy chance-constrained programming refers to a type
of decision-making problem which contains fuzzy pa-
rameters. The forward-looking decision results of this
problem may not satisfy the constraints with fuzzy pa-
rameters to some extent, but the possibility of satisfying
the constraints should be no less than the pre-specified
confidence level. The general form of the fuzzy chance-
constrained programming problem is:

]
gf(x ,6)z }2
Cr gl(x)f) i= ‘,}’Z}Z/))

(3)

where x is the decision vector; ¢ is the fuzzy parameter
vector; gi(x, &) <0 is the ith constraint; « is the confi-
dence level of the object function; S is the confidence
level of the fuzzy constraint. The decision vector x is
feasible only when the credibility of gi(x, §) <0 is no less
than . Additionally, the optimal solution can maximize
the object function fat the confidence level of a.
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VPP scheduling strategy based on credibility
theory

Traditional VPP scheduling strategy

The primary objectives of the VPP optimal scheduling
problem are various, such as minimizing the cost of pro-
ducing energy, or maximizing the profits of VPPs. In this
paper, the priority of VPP operation is to make use of
the renewable energy resources (RES), and based on this,
the objective function is to minimize the costs of con-
ventional unit generation and the interruptible load.

Nbr
minf = Z{Z]Gl )+ i (t-1)u; (£)SU,(2)] +Z]DR,(t}
i=1

j=1

(4)
Jai(t) = ui(t) (aiPai* + biPgi + c;) (5)
Jpri(t) = d;iPprju;(t) (6)

where Jg,(£) is the operational cost of unit i at time ¢
SU(¢) is the start-up cost of the unit i at time & a;, b;, ¢;
are the coefficients of the operational cost of the unit i;d;
is the coefficient of the cost by curtailing the load j; Pg;
is the output power of the unit i; Ppp; is the virtual gen-
eration via curtailing the load; u,(¢) is the binary state
variable of the unit i at time #: it equals “1” if the unit {
is on at time ¢, and equals “0” if the unit i is off at time
t. Similarly, u(t) is the binary state variable of the load j
at time t. Ng and Npg are the numbers of conventional
units and loads in the demand response respectively.

The constraints considered in this model are presented
as follows:

1) Supply—demand balancing constraint

Npr

iPGi(t) + ZPDR/(L‘) + Pres(t) = Py(2) (7)
=1 =

2) System reserve constraint
Nor
Z o 4 Z PR + Pres(t)2Py(t) + R(t) (8)
3) DG constraints
() P <P (1) <t () P 9)
—RD;<Pg;(t)-Pgi(t-1)<RU; (10)
4) Interruptible load constraint

u;(t) P <Ppr;(£)<uj (t)Phgs

(11)

where Prgs(t) is the power generated by renewables at
time ¢; P;(¢) is the total load at time ¢; R(¢) is the reserve
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Fig. 1 Wiring Diagram of the VPP

capacity for the fluctuation of load and renewables at
time ¢ P’g}“ and PZ* are the minimum and the max-
imum output limit of the unit i respectively; RU; and
RD; are the ramp-up rate and the ramp-down rate of the
unit Pg}e‘]‘- and Ppp’ are the minimum and maximum
allowed curtailed value of the load j respectively.

Fuzzy chance-constrained VPP scheduling
The fuzzy parameters of VPP scheduling strategy come
from the unpredictable output of renewables in VPPs
[24]. Accurate mathematical expressions of those uncer-
tain characteristics should be established, which are the
foundations for the uncertain scheduling strategy. The
main characterizing methods include modeling output
of renewables and modeling their predicted errors. In
this paper, the modeling of the forecast errors is consid-
ered to describe the fuzziness of renewables instead of
modeling the output. The modeling of renewables out-
put will make three constraints containing fuzzy vari-
ables, which are the supply—demand balance constraint,
the spinning reserve constraint, and the static security
constraint. If the predicted value is regarded as a deter-
ministic value and the prediction error is utilized to de-
scribe the fuzziness of renewables, only the spinning
reserve constraint should be considered.

The percentage of renewables prediction error is de-
fined as .

o = Zees-Pars 109,
RES

where Pgzrs and ngs are the real value and the fore-

casted value of the output respectively.

(12)

The membership function of the prediction error is:

1
e>0

(13)
e<0

—,
l1+o0 £
E.

where E, and E_ are the average values of positive and
negative prediction errors obtained from statistics, re-
spectively; o is the weighting factor.

According to credibility theory, the credibility measure
of the fuzzy parameter ¢ can be expressed as:

Cr(€<e) = (14)

_ v
2[1+0(£>],

Thus, according to credibility theory, the spinning
reserve constraint of the traditional scheduling model

Table 1 Parameters of conventional generators

Node a b c pgex pgn RU(RD)
1 0.1 135 1769 220 100 55
2 0.1 326 1299 100 10 50
6 0.1 17.6 1374 20 10 20
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Table 2 Load data of the VPP in 24 h

Time Load Time Load Time Load Time Load
1 1752 7 1734 13 2422 19 246.0
2 165.2 8 1776 14 2436 20 2374
3 1587 9 186.8 15 2489 21 2373
4 154.7 10 2069 16 255.8 22 2327
5 155.1 11 2286 17 2560 23 195.9
6 160.5 12 236.1 18 2467 24 195.6

should be changed into chance constraints containing
fuzzy variables.

Cr{i w(t)Pg + f ()P + Pres(£)(1+ €)2Py(t) + R(t)}zfx

i=1 j=1

(15)

where «a is the credibility level, which represents the
reliability level of the reserve constraint. In the realistic
problem, a should be more than 0.5.

According to the equivalent theorem of credibility the-
ory, (15) can be transformed into an equivalent form as
indicated in (16):

Np,

Ng R
Py () + R(t)~Ps(t) -y _ ui()PET~y _ uy(t) Py
i=1 j=1
Prgs(t) <K
(16)
K, = inf{K|K = p'(2(1-a))},Va20.5 (17)

The equivalent form of the fuzzy chance constraint
can be further deduced to the following forms:
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Ng Nopr

D w(O)PE + Y wy(O)PB + (1 + Ka)Prgs(t)2PL(2) + R(t)
i—1 j=1

(18)

2a-1
A P

(19)

It can be proved that K, is a monotonously increasing
function. Equation (18) illustrates the links between the
confidence level of the fuzzy constraint and spinning re-
serve allocation when taking the fuzziness of RES pre-
dicted error into account. It shows that to improve the
confidence level of the spinning reserve constraint, a
greater spinning reserve should be allocated. The form
of the formula is similar to the traditional spinning re-
serve constraint. Thus, the model can be easily solved by
correcting the reserve levels using the regular optimization
algorithm with the coefficient K.

Methods
As introduced above, once chance constraint is trans-
formed into its crisp equivalent, traditional optimization
methods can be employed to solve the scheduling prob-
lem. Based on the natural selection and genetic manipu-
lation, genetic algorithms (GAs) are heuristic random
searching methods, and they possess excellent robust-
ness and commonality. However, there are some short-
falls in the original GA, e.g. the slow convergence speed,
falling easily into the locally optimal solution, and so on.
A self-adaptive GA method was introduced to improve
the performance. The probabilities of crossover and mu-
tation for each generation are adaptively determined,
which can overcome the premature convergence and the
slow convergence speed in later evolutionary processes.
The crossover and mutation operators are two im-
portant genetic operators. In this paper, the crossover
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Fig. 2 Forecasted Output of the Wind Farm in 24 h
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operator adopts double-cut-point crossover and the mu-
tation operator is implemented through power disturb-
ance. The crossover and mutation probabilities adopt
self-adaptation mechanism and they will adjust adap-
tively according to the values of the fitness function [25],
as shown in (20) and (21):

(Pa=Pas) ( )

PC _ Pc2_ fmax_ffwg ) f quvg
(PC -P; ) _fmin '
Fa- 1 favz_f(fmin ) 7f <favg
(20)
(sz—ng) (f'_favg> .
P, = P fmax_favg 7 f Zfavg
_ (PWII _PWIZ) (f'_fmin) '
Pm favg_fmin 7f <fm/g
(21)

where P, and P, are the crossover and mutation prob-
abilities respectively; fiax finin» favg are the maximum,
minimum, and average fitness; f* is the greater fitness of
the two individuals for genetic operation. Therefore, the
superior individual with greater fitness is more likely to
be reserved and the inferior individual tends to be trans-
formed into a new one. The improved method could
guarantee the population diversity and accelerate its
convergence; furthermore, it could avoid the phenomena
of premature and slow convergent speed in the later
stage of evolution.

Case study

To evaluate the proposed approach, two test systems
are studied. At first, a small VPP consisting of three
conventional generators, one 50 MW wind farm and
loads (conventional and interruptible) is employed.
Then a system consisting of 10 generators and one
wind farm is implemented to show the effectiveness
of the proposed model.

Table 3 Optimal solutions compared between deterministic
and fuzzy chance-constrained model

Cost/$ a=06 a=07 a=08 a=09 Deterministic
model

Start-up cost 400 400 200 161 387

of units

Operation cost 143,380 144,681 144,280 144,341 144,300

Cost of curtailing 2253 934 1644 1620 2333

load

Total cost 146,033 146,015 146,124 146,122 147,020
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Table 4 Optimal solutions without curtailing loads
Cost/$ a=06 a=07 a=08

a=09 Deterministic
model

Start-up cost 400 400 200 200 200
of units

Operation 145,854 145865 146,080 146,096 146,287
cost
Total cost 146,254 146,265 146,280 146,296 146487

Test systems

The structure of the proposed VPP is shown in Fig. 1.
The parameters of the generators and loads in 24 h are
indicated in Tables 1 and 2. The wind farm is integrated
into the system at Node 4, and its forecasted output in
24 h is shown in Fig. 2. The load at Node 1 is the inter-
ruptible load which can be curtailed if necessary. The
curtailed load can be regarded as virtual power which
can be adjusted continuously and provide the spinning
reserve. Its virtual generation capacity ranges from
10 MW to 40 MW. The cost paid for the curtailed load
is 45 $/MW.

The parameters of the self-adaptive GA are set as
follows: the population size Np =30; maximum itera-
tions Ny, =300; P, =0.85, P,=0.5, P3=02, P, =
0.09, P,,» =0.05, P,,3=0.01. Considering the stochas-
tic nature of GA, 20 test trials were conducted for
each case.

Results and discussion

The scheduling model, consisting of (4)—(7), (9)-(11),
and (18)—(19), is solved by the self-adaptive GA method
in Methods. Apart from the data described in Test sys-
tems, different confidence levels are also applied, ranging
from 0.6 to 0.9, in steps of 0.1. The corresponding costs
for satisfying the fuzzy chance spinning reserve constraint
are listed in Table 3, including start-up cost, operation
cost, cost of curtailing load, and total cost. In addition, the
solutions of the fuzzy chance model are compared with
those of the traditional deterministic model.

From Table 3, the total costs vary under different confi-
dence levels; especially when a =0.6, «=0.7, =08, a =
0.9, the total cost are 146,033 $, 146,015 $, 146,124 $,
146,122 $, respectively, which are all less than the cost in
deterministic model. It can be inferred that the proper se-
lection of confidence levels will help achieve a tradeoff
between economy and reliability. However, as the credibil-
ity level is increasing gradually from 0.6 to 0.9, the opti-
mized results (i.e., the total costs) in Table 3 do not show

Table 5 Wind power and the load of the VPP in 6 h

Hour 1 2 3 4 5 6
Wind Power/MW 42 63 70 60 58 40
Load/MW 1036 1110 1258 1406 1480 1628




Ai et al. Protection and Control of Modern Power Systems (2016) 1:3

Table 6 Parameters of conventional generators

unit  a b c prex pmin RU(RD)
1 000043 2160 95820 470 150 80
2 000063 2105 13136 460 135 80
3 000039 2081 6047 340 73 80
4 000070 2390 47160 300 60 50
5 000079 2162 48029 243 73 50
6 000056 1787 60175 160 57 50
7 000211 1651 50271 130 20 50
8 000480 2323 63940 120 47 30
9 010908 1958 45560 800 20 30
10 000951 2254 69240 55 55 30

a clear monotonic feature. It should be noted that this
does not mean that the results of the fuzzy chance model
based on credibility theory are confusing. It is because the
results are interfered by the demand-side resources.

If the loads are not allowed to be curtailed, the effect
of the interruptible load on the solutions will be ex-
cluded. Then the total cost of VPP operation in different
confidence levels will be 146,254 $, 146,265 $, 146,280 $,
146,296 $ and 146,487 $ respectively, showing a clear
monotonously increasing trend, just as shown in Table 4.
This is because, as the credibility level increases, VPP
operator needs to spare more reserve capacity to guaran-
tee the growing reliability requirement. Undoubtedly,
that would lead to the rise of the total cost. Meanwhile,
it is obvious that the total costs in model without curtailing
loads are higher than those in original model through com-
paring the values in Tables 3 and 4. Therefore, the intro-
duction of the demand response (or interruptible loads)
helps to improve the economy of the whole system,
which is consistent with the current research results.
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Furthermore, these results stimulate VPP to incorporate
demand response and chance constraint programming
into its operation strategy.

To further confirm the effectiveness of the proposed
fuzzy chance model, the operation strategy of a larger
VPP system in 6 h is tested. In order to exclude the im-
pact of the interruptible load cost, loads in this system
do not participate in the operation. The forecasted out-
put of the wind farm and loads is shown in Table 5, and
the parameters of the 10 generators are listed in Table 6.

The operational costs of VPPs under different confi-
dence levels are depicted in Fig. 3, which are the same
as the results in [24], except that confidence levels are
set as 1 -a in this paper. Figure 3 shows the corre-
sponding cost is increasing when the credibility level
rises from 0.6 to 0.9. It is because the confidence level
represents the reliability of VPP operation. To reduce
the risk resulting from the unpredictable output of re-
newables, more spinning reserves are required, which
will definitely increase the operational cost. The two case
studies prove that the proposed model can put forward
an optimal operation strategy which can reach the bal-
ance between economy and risks/reliability.

Conclusions

VPP is a promising way to integrate the DERs into the
power system. As the output of DERs is usually unpre-
dictable, the scheduling of VPPs has to deal with a num-
ber of uncertain variables, which is a fuzzy programming
problem. To realize the proper balance between benefits
and risks, credibility theory is introduced in the optimal
scheduling strategy for VPPs in this paper, thereby pro-
posing a fuzzy chance scheduling model. The concept of
the confidence level can quantify the possibility of satis-
tying the fuzzy chance constraints, which represents the
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Fig. 3 Total Cost of the VPP under Various Confidence Levels
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risk tolerance of VPPs. Further, through transforming
the fuzzy chance constraints into their equivalent forms,
the conventional optimization algorithms can be utilized
to solve the optimal scheduling problem. The case study
proves that the operational cost of VPPs will increase
when the confidence level increases. That is to say, un-
necessary costs can be reduced when the risk of VPP op-
eration is within tolerance.
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