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Abstract 

In this paper, load frequency control is performed for a two‑area power system incorporating a high penetration of 
renewable energy sources. A droop controller for a type 3 wind turbine is used to extract the stored kinetic energy 
from the rotating masses during sudden load disturbances. An auxiliary storage controller is applied to achieve effec‑
tive frequency response. The coot optimization algorithm (COA) is applied to allocate the optimum parameters of the 
fractional‑order proportional integral derivative (FOPID), droop and auxiliary storage controllers. The fitness function 
is represented by the summation of integral square deviations in tie line power, and Areas 1 and 2 frequency errors. 
The robustness of the COA is proven by comparing the results with benchmarked optimizers including: atomic orbital 
search, honey badger algorithm, water cycle algorithm and particle swarm optimization. Performance assessment 
is confirmed in the following four scenarios: (i) optimization while including PID controllers; (ii) optimization while 
including FOPID controllers; (iii) validation of COA results under various load disturbances; and (iv) validation of the 
proposed controllers under varying weather conditions.
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1 Introduction
Renewable energy sources (RES) are promising alterna-
tives to fossil fuels due to the exhaustion of fossil fuels 
and their negative environmental effects [1]. The fre-
quency of a power system deviates from its nominal 
value because of continuous load changes and other dis-
turbances [2]. Stored kinetic energy (KE) in the rotors of 
conventional synchronous generators (SG) will tolerate 
normal load changes until the operation of primary and 
secondary frequency regulation loops [3]. Power systems 
with a high penetration of RES have less KE owing to the 

reduction of inherent inertia with the increase of RES [4]. 
Thus, problems in power system stability and frequency 
regulation may be initiated [3, 4]. In this paper, partici-
pation of RES and energy storage devices for frequency 
support is discussed for a two-area power system. Fre-
quency support is performed by a new optimization algo-
rithm, namely, the Coot Optimization Algorithm (COA). 
The COA is robust in allocating the optimal parameters 
of the fractional order proportional integral derivative 
(FOPID) controllers, washout filter controller and droop 
controller.

Energy storage systems play an essential role in the fre-
quency regulation of a power system [5]. Battery energy 
storage (BES) is selected in [6, 7] to adjust the frequency 
of a microgrid integrated with wind turbines (WT) while 
superconducting magnetic energy storage (SMES) is 
proposed for frequency regulation in [8, 9]. In addition, 
supercapacitor energy storage (SCES) is proposed in [10, 
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11] to control the frequency of a microgrid integrated 
with PV and tidal energy.

One technique for RES participation in frequency sup-
port is de-loading, where some reserves of active power 
in RES is maintained to support sudden load increase. 
Overvoltage de-loading of PV is illustrated in [12, 13] to 
tolerate load disturbance while overspeed and pitch angle 
control of variable speed wind turbine (VSWT) are dis-
cussed in [14–16]. Another technique is inertial response, 
which momentarily supports a power system by addi-
tional active power extracted from a VSWT. Recently, 
extensive research has been done to enhance the inertia 
of a power system with high penetration of RES using 
virtual inertial response techniques. Inertial response 
is classified into fast power reserve, hidden inertia, and 
droop control. In [17, 18], fast power reserve is used to 
enhance power system inertia while hidden inertia is pro-
posed in [19, 20]. A droop controller, which is proposed 
in this paper, is demonstrated for inertial response and 
effective frequency regulation in [21–23].

Power system stability during load disturbance is 
achieved by load frequency control (LFC) which is a sec-
ondary control loop used to eliminate errors in frequency 
and tie line power [24]. Proportional integral derivative 
(PID) controllers have been benchmarked in many LFC 
studies. In [25], the dynamic performance of an off-
shore grid-connected wind farm is enhanced by flywheel 
energy storage (FWES) based on a PID controller. In [8], 
LFC of a power system considering high penetration of 
wind power is illustrated by SMES based on a PID con-
troller. In [26], LFC is performed by a PID droop control-
ler for a two-area power system highly penetrated with 
wind power, whereas in [27], LFC is performed by an 
adaptive PID droop controller for an isolated power sys-
tem also highly penetrated with wind power. Also, LFC 
is illustrated in [28] using a two-degrees-of-freedom PID 
for a three-area power system integrated with plug-in 
electric vehicles (EVs).

The fractional order PID (FOPID) controller is vali-
dated and its robustness proved to be better than a tra-
ditional PID because of the higher number of its tunable 
parameters [24]. In [29], LFC is examined for a two-area 
power system by two-degrees-of-freedom FOPID. In 
addition, in [30], LFC is equipped for a microgrid inte-
grated with VSWT using droop control-based FOPID, 
whereas in [31], LFC is demonstrated using FOPID for a 
single area containing hydro, reheat and non-reheat tur-
bines. A lot of studies have been devoted to illustrating 
the optimization algorithms which are used to.

tune power system parameters. In [21], LFC is rein-
forced using BES for PV and extracting the KE from 
VSWT by tuning the parameters of the PID controller 
using a stochastic fractal optimizer. In [32], optimal 

charging of EVs for LFC is performed by allocating 
the parameters of a PI controller using a genetic algo-
rithm. Optimum parameters of the PID controller are 
obtained in [33] using firefly and particle swarm opti-
mization (PSO) to achieve optimal LFC using hybrid 
FWES and BES, while optimal parameters of the PI 
controller are obtained in [34] by a sine cosine algo-
rithm to optimize the LFC using SCES. In [35], LFC 
is performed by optimizing the parameters of the PID 
controllers of SMES and BES using a social spider opti-
mizer. Parameters of an FOPID controller for optimal 
LFC are obtained in [24] and [36] by a modified hun-
ger games search optimizer and chaotic multi-objective 
optimizer, respectively.

Frequency regulation of a two-area power system is 
performed in this paper by COA which allocates the 
parameters of the FOPID controller. COA is a novel algo-
rithm and has been validated as a robust optimizer in 
many studies [37, 38]. In [39], COA is validated for opti-
mal parameter extraction of a lithium-ion battery when 
compared to other six benchmarked optimizers. Optimal 
sizing of the energy storage system required to support a 
wind power producer is obtained in [40] by COA, which 
proves its robustness compared to two other bench-
marked optimizers. The paper seeks a novel algorithm 
while performing LFC for the proposed two-area power 
system, and COA, HBA and AOS are chosen as the novel 
robust optimizers, while their fitness is compared with 
PSO and WCA which are well known and are used as the 
benchmarked optimizers. From the results, COA proves 
its robustness over HBA, AOS, PSO and WCA.

The proposed model is a two-area power system. Area 
1 contains steam SG and has 50% penetration of wind 
power, while Area 2 contains hydro SG and has 20% pen-
etration of solar power in addition to an auxiliary storage 
system. COA is validated first by comparing the opti-
mization results while including PID controller as the 
benchmark, and robust optimizers such as atomic orbital 
search optimizer (AOS) [41], honey badger algorithm 
(HBA) [42], water cycle algorithm (WCA) and PSO. 
Then PID controllers are replaced by FOPID controllers 
and the optimization is performed again by the same 
five optimizers to validate the robustness of COA. COA 
results are benchmarked and validated for its robustness 
under variable load disturbances and varying weather 
conditions.

The main outcomes of this paper are:

(a) A novel application of COA is proposed for param-
eter extraction of FOPID frequency controllers.

(b) LFC are supported via droop controller for inertial 
response of WT, pitch angle supplementary con-
troller, and transient support of stored energy.
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(c) Benchmarking with challenging optimization 
methods is incorporated for the validation of the 
proposed method.

(d) Different scenarios are studied to investigate the 
robustness of the designed controllers.

The remainder of the paper is structured as follows. 
Modelling of the two-area power system is discussed 
in Sect. 2, and Sect. 3 illustrates the algorithm of COA. 
Simulation results for different scenarios are demon-
strated in Sect.  4, and the outcomes of this paper are 
discussed in Sect. 5.

2  System modelling
The intended system is a two-area power system shown 
in Fig. 1. It consists of conventional plants and different 
RES such as type 3 wind turbines and PV systems. Area 
1 consists of 50% conventional steam turbine and 50% 
VSWT. The output power of the conventional steam 
turbine is represented by Pm1 while the output electrical 
power of the VSWT is represented by Pe in Fig. 1. Area 2 
consists of 80% conventional hydro turbine and 20% solar 
energy, with the output power of the conventional hydro 
turbine represented by Pm2 and the solar energy repre-
sented by PPV  in Fig. 1.

2.1  Model of type 3 wind turbine
A type 3 WT with a rating of 3.6  MW is proposed in 
this model. Its parameters are given in Table 1 [43]. The 
block diagram of the type 3 WT is illustrated in Figs. 2, 
4 and 5 [43]. The PI controller in Fig. 2 gives an output 
torque signal depending on the WT speed deviation. This 
model is selected to estimate the dynamic operation of 
the intended two-area power system during any power 
disturbances. The output WT mechanical power is illus-
trated by:

where the air density is ρ ( kg/m3 ), the blade swept area is 
Awt ( m2 ), the wind speed is Vw (assumed 11 m/s ), and the 
coefficient of performance is Cp given as:

where β is the blade pitch angle and αk ,n are constants 
illustrated in [43]. � is the WT tip speed ratio given as:

where the rotor speed is denoted by ωwt and the WT 
radius is represented by Kb . The relations between the 

(1)Pm = 0.5× ρ × Awt × Vw
3
× Cp

(2)Cp =

4

k=0

4

n=0

αk ,n�
nβk

(3)� =
Kb × ωwt

Vw

output mechanical power of the WT and its speed at dif-
ferent wind speeds are demonstrated in Fig. 3. Maximum 
power point tracking (MPPT) can be expressed by the 
curve fitting, as:

Equation  (4) relates the reference speed of the WT 
( ωwt_ref  ) to its output electrical power. The maximum 
and minimum limits of the WT speed are 1.2 pu and 0.7 
pu, respectively.

The droop controller is emulated by Fig.  4, which 
demonstrates that the temporary power signal Pdroop is 
dependent on the frequency deviation ( �F  ) of Area 1 
�F1 . The droop controller performs the same function as 
the droop controller of the SG [3, 44], which accelerates 
and decelerates the rotor of type 3 WT in case of positive 
and negative �F1 , respectively [45].

The pitch angle controller, which avoids the output 
power corresponding to higher wind speed exceed-
ing the generator rated power, is illustrated in Fig.  5. 
The dependent WT speed deviation signal βref  is the 
required pitch angle to avoid the speed of the rotor 
exceeding its limits. βref  is zero during normal wind 
speed, but for wind speed above the rated value, it has a 
value higher than zero. βa is an additional signal which is 
used to increase and decrease WT output power during 
negative and positive �F  , respectively [45]. Pdroop and 
β are the outputs of Figs. 4 and 5, which are the VSWT 
model inputs in Fig. 2.

2.2  Model of PV
Panels of PV consist of a few PV modules which are con-
nected in parallel and in series to increase the current 
and voltage of the PV array [24]. The mathematical equa-
tions which describe the PV model are given in (5)–(10) 
[46], while the required PV parameters for electrical 
characteristic simulation are given in Table 1 [47].

(4)ωwt_ref = 1.6Pe
3
− 2.7Pe

2
+ 2.3Pe + 0.45

(5)Vt =
KBzT

Qe

(6)Iph =

(

G

Gref

)

(

Iphn + Ki

(

T − Tref

))

(7)Io = Isc

(

G

Gref

)(

T

Tref

)3

e

(

1− Voc
MVt

)

(8)

IPV = Iph −

(

IPV Rs + VPV

RP

)

− Io

(

e

(

IPV Rs+VPV
MVt

)

− 1

)
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where Vt is the thermal PV voltage, KBz is the Boltzmann 
constant, T  is the temperature of the PV, Qe is the elec-
tron charge, and G is the actual irradiance. Gref  and Tref  
are the irradiance and temperature at standard condi-
tions, respectively. Ki is the short circuit current tem-
perature coefficient, Iph and Iphn are the respective light 
produced current at the actual temperature and at stand-
ard conditions, Io is the reverse saturation diode current, 
and Isc is the short circuit current. Voc is the open cir-
cuit voltage, M is the factor of diode ideality, IPV  is the 
PV output current, VPV  is the PV output voltage, RP is 

(9)RP = RPs

(

G

Gref

)

(10)PPV = VPV IPV

the shunt resistance, Rs is the series resistance, RPs is the 
standard condition shunt resistance, and PPV  is the out-
put power of the PV.

MPPT methods are required for bulk stations of PV [48]. 
Reference [49] illustrates a comprehensive review on vari-
ous MPPT methods for PV. An artificial neural network 
(ANN) for MPPT as discussed in [50] is used in this paper. 
There are two input layers ( T  , G ) and one output layer 
( VPV  ). The output current and power at MPP are detected 
once the MPPT voltage is estimated.

2.3  Model of conventional units
Hydro and steam power plants are incorporated into the 
proposed two-area power system. The transfer functions of 
the steam turbine are modelled mathematically as:

Fig. 1 Block diagram model of the studied two‑area power system
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The steam turbine model is based on a single reheat stage 
as described in [51]. TRH and TCH represent the reheater 

Turbine model
FHPTRHs + 1

(TRHs + 1)(TCHs + 1)

Governor model
1

TGs + 1

Generator model
1

2H1s + D1

and main inlet valve time constants, and FHP is the frac-
tional power generated by the high-pressure turbine. The 
time lag of the governor is represented by the time con-
stant TG . The generator model is represented by its swing 
equation where H1 represents its inertia and D1 is the load 
damping constant.

The transfer functions of the hydro turbine are modelled 
as:

The model of the hydro turbine is a non minimum phase 
system that represents the change in output power due to 
the change in gate opening, and TW  represents the water 
starting time. Unlike a steam turbine governor, a hydro tur-
bine governor requires an additional transient droop with 
long resetting time to limit the gate movement until water 
flow and output power have time to catch up [51]. RPd 
represents the permanent droop and RTd is the transient 
droop, TR is the reset time, and TGH is a time constant rep-
resenting the delay in the governor response. Also, the gen-
erator model is represented by its swing equation where H2 
represents its inertia and D2 is the load damping constant.

Turbine model
−TW s + 1

0.5TW s + 1

Governor model
TRs + 1

(TGHs + 1)
((

RTd
RPd

)

T
R
s + 1

)

Generator model
1

2H2s + D2

Fig. 2 Block diagram model of the proposed type 3 wind turbine

Fig. 3 Output mechanical power of the proposed type 3 wind 
turbine at certain rotational speed for different wind speeds
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3  Coot optimization algorithm
COA is categorized as a novel swarm-based meta-heuris-
tic algorithm, introduced by Iraj Naruei and Farshid Key-
nia [52]. Its behavior for food seeking can be described by 
the following four phases: random motion; chain motion; 
improving coot position by tracing the leaders; and leader 
motion toward optimal zone including the food. The algo-
rithm is started by selecting an initial population randomly, 

and this population is frequently estimated by the objective 
function until the optimal value is obtained. The randomly 
generated population can be evaluated as:

(11)
coot position(i) = Rand(1, dim)× (UB− LB)+ LB

(12)LB = LB1, LB2, LB3, . . . , LBdim

Table 1 Parameters of the proposed two‑area power system

The values H1 and H2 are given at zero penetration of RES

Area 1 Area 2

Parameters Value Parameters Values

H1 3 s H2 3 s

D1 1 pu D2 1 pu

R1 0.05 pu R2 0.05 pu

β1 21 pu β2 21 pu

FHP 0.3 TW 1 s

TRH 7 s TR 0.513 s

TCH 0.3 s TGH 48.7 s

TG 0.2 s RTd/RPd 19.493

Type 3 wind turbine PV

Hwt 5.74 s Rs 0.134 Ω

PIT kp = 3 RPs 134.48 Ω

ki = 0.3 Iphn 8.2527 A

Pmax 3.6 MW M 1.282

Tmin 0 Tref 25 °C

Tmax 0.833 pu Gref 1000 W/m2

Pitch angle and droop controller Isc 8.2 A

Delay 0.1 s Voc 33.12 V

Dead zone 0.001 pu Ki 0.037%/°C

Pdroop,min −0.2 pu VMPP 27.28 V

Pdroop,max 0.2 pu IMPP 7.5 A

PIP kp = 50 PMPP 204.6 W

ki = 4.5 Auxiliary storage

βa,min −10 degrees Ks 0.98 pu

βa,max 10 degrees τs 0.03 s

τd 0.3 s (dP/dt)min −0.1 pu/s

βmin 0 degree (dP/dt)max 0.1 pu/s

βmax 27 degrees Pmin − 0.1 pu

(dβ/dt)min −10 degrees/s Pmax 0.1 pu

(dβ/dt)max 10 degrees/s

Fig. 4 Droop controller of the proposed type 3 wind turbine
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where i is the current coot index, coot position(i) is the 
position of coot, dim is the dimension of the problem, 
LB is the lower bound matrix and UB is the upper bound 
matrix.

The fitness of each coot is calculated by the objective 
function after determining the coot initial population and 
position. The objective function which is required to be 
optimized by COA is given in (14), which represents the 
integral square error ( ISE ) consisting of three small values 
of tie line power deviation (�P12 ), and the deviations in fre-
quency of Area 1 ( �F1 ) and Area 2 ( �F2).

The random motion of a coot which helps the algorithm 
to explore various zones in the search space and converge 
to the global optimum is illustrated in (15), and the new 
coot position is estimated in (16).

where R1 is a random number between [0,1] and A is esti-
mated by:

where the maximum iteration number is represented by 
Iteration and the current iteration is represented by Iter.

The second phase is the chain movement which can 
be implemented by calculating the mean position of 
two coots as:

(13)UB = UB1,UB2,UB3, . . . ,UBdim

(14)ISE =

∫ t

0

(

�P12
2
+�F1

2
+�F2

2
)

dt

(15)Q = Rand(1, dim)× (UB− LB)+ LB

(16)
coot position(i) =coot position(i)+ A× R1

× (Q − coot position(i))

(17)A = 1−
Iter

Iteration

(18)
coot position(i) =0.5× (coot position(i − 1)

+coot position(i))

where coot position(i − 1) is the position of the second 
coot.

Improving the position of coots by tracing leaders can 
be implemented by selecting a few leaders randomly 
and estimating their mean position. Then coots modify 
their positions according to the mean position of the 
leaders. The criteria for leader selection is provided in 
(19) and the modified coot position according to leader 
position is estimated according to (20).

where K  is the index number of the leader, LD is the 
number of leaders, R2 is a random number between [0,1], 
R is a random number between [−1,1] and LDP(K ) is the 
chosen leader position.

Finally, leaders’ position is modified to find a new 
optimal point near the best position that has been 
found, as:

where R3 and R4 are random numbers between [0,1], GB 
is the best position and B is estimated by:

B× R3 prevents the COA from blocking in a local opti-
mum by performing larger movements randomly, which 
means that the COA performs exploitation and explo-
ration at the same time. On the other hand, cos(2Rπ) 
helps to seek a better position near the best-found posi-
tion with various radii. Figure 6 illustrates the flow chart 
which demonstrates the procedures of COA.

(19)K = 1+ (iMODLD)

(20)

coot position(i) =LDP(K )+ 2× R2 × cos (2Rπ)

× (LDP(K )− coot position(i))

(21)

LDP(i) =

{

B× R3 × cos(2Rπ)× (GB− LDP(i))+ GB,R4 < 0.5
B× R3 × cos(2Rπ)× (GB− LDP(i))− GB,R4 ≥ 0.5

(22)B = 2−
Iter

Iteration

Fig. 5 Pitch angle controller of the proposed type 3 wind turbine
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4  Simulation results
This section illustrates various scenarios that are per-
formed on the proposed system discussed earlier in 
Sect.  2. These scenarios are illustrated by MATLAB/
SIMULINK 2018b. Optimization processes are applied 
on the 1st and 2nd scenarios for COA benchmarking 
and comparisons. COA results are validated in the 3rd 
and 4th scenarios.

For fair comparison, lower bound, upper bound and 
the number of populations are maintained constant for 
all optimizers and the number of iterations is selected 
as 100.

4.1  Scenario 1: optimization of conventional PID controller 
parameters

In this scenario, optimization is performed to allo-
cate the optimal parameters of PID controllers, time 
of washout filter ( τW  ), pitch angle controller gain ( Kβ ) 
and WT droop ( Rwt ). The objective function of the 
ISE is optimized for 100  s by the 5 optimizers, i.e.: 
PSO, WCA, HBA, AOS and COA. It is found that the 
corresponding ISE are 2.6307× 10−5 , 3.1371× 10−5 , 
3.3435× 10−5 , 5.1316× 10−5 and 5.3451× 10−5 for 
COA, AOS, HBA, WCA and PSO, respectively. The 
convergence curves of the 5 optimizers for 100 itera-
tions are shown in Fig.  7. Optimal settings of the 
optimized parameters for the 5 optimizers are dem-
onstrated in Table  2, while the system responses �F1 , 
�F2 and �P12 due to 0.05 pu load increase in Area 1 are 
illustrated in Fig.  8. The maximum deviations in �F1 , 
�F2 and �P12 in the case of COA are −1.97× 10−3 pu, 
−7.4 × 10−4 pu and −4.13× 10−3 pu, respectively. It is 
also found that the maximum deviation in �F1 in case 
the of COA is less than WCA by 72.6% while the max-
imum deviation in �F2 in COA is less than PSO and 
WCA by 20.27% and 32.43%, respectively. In addition, 
the maximum deviation in �P12 in the case of COA is 
less than PSO, WCA, HBA and AOS by 30.5%, 69.98%, 
5.09% and 3.9%, respectively. It proves that ISE for COA 
is the smallest of the optimizers. The reductions in the 
maximum deviations of �F1 , �F2 and �P12 in the case 
of COA are greater than other optimizers. The overall 
conclusion is that COA is the most robust of the opti-
mizers for PID controllers.

4.2  Scenario 2: optimization of FOPID controller 
parameters

In this scenario, PID controllers are replaced by FOPID 
controllers and optimization is performed to allocate 
the optimal parameters of these controllers in addition 
to τW ,Kβ and Rwt . It is found that ISE are 1.8708× 10−5 , 
2.3697× 10−5 , 3.2711× 10−5 , 3.7009× 10−5 and 
4.7540× 10−5 for COA, AOS, HBA, PSO and WCA, 

respectively. The convergence curves of the 5 optimizers 
for 100 iterations are shown in Fig. 9. Optimal settings of 
the optimized parameters for the 5 optimizers are dem-
onstrated in Table 3, and the system responses �F1 , �F2 
and �P12 due to 0.05 pu load increase in Area 1 are illus-
trated in Fig.  10. As seen, the maximum deviations in 
�F1 , �F2 and �P12 in the case of COA are −2.79× 10−3 
pu, −6.7× 10−4 pu and −3.7× 10−3 pu, respectively. It 
is found that the maximum deviation in �F1 in the case 
of COA is less than PSO and WCA by 4.3% and 21.15%, 
respectively, while the maximum deviation in �F2 for the 
COA is less than PSO, HBA and AOS by 5.97%, 44.78% 
and 25.37%, respectively. Also, the maximum deviation 
in �P12 for the COA is less than PSO, WCA, HBA and 
AOS by 28.1%, 80.27%, 51.08% and 0.54%, respectively. It 
proves that ISE for the COA is the smallest of the opti-
mizers. Moreover, the reductions in the maximum devia-
tions of �F1 , �F2 and �P12 in the case of the COA are 
greater than the others. In addition, ISE in this scenario 
are smaller than ISE in the 1st scenario. Thus, it can be 
concluded that the COA is the most robust optimizer for 
FOPID controller when compared to the other four opti-
mizers and PID. The advantage of FOPID over the con-
ventional PID can be considered as FOPID having more 
optimized parameters than conventional PID. Thus, 
FOPID is included in the next two scenarios for further 
investigation.

4.3  Scenario 3: robustness of the COA under variable load 
disturbances

In this scenario, the COA is validated (including 
FOPID) under various load disturbances in Area 1 
which are shown in Fig.  11. It is observed that ISE 
are 2.7045× 10−4 , 3.7125× 10−4 , 4.4567× 10−4 , 
3.3989× 10−4 and 4.1807× 10−4 for COA, AOS, HBA, 
PSO and WCA, respectively. The system responses �F1 , 
�F2 and �P12 due to various load disturbances (shown 
in Fig. 11) are illustrated in Fig. 12. Looking at the devia-
tions in the case of COA, the maximum deviations in �F1 
are −2.79× 10−3 pu, 5.28× 10−3 pu and −5.36× 10−3 
pu for the 1st, 2nd and 3rd disturbances, respectively. 
The maximum deviations in �F2 are −6.7× 10−4 pu, 
1.183× 10−3 pu and −1.24 × 10−3 pu for the 1st, 2nd and 
3rd disturbances respectively. Also, the maximum devia-
tions in �P12 are −3.7× 10−3 pu, 8.47× 10−3 pu and 
−7.97× 10−3 pu for the 1st, 2nd and 3rd disturbances, 
respectively. The percentage reductions in �F1 , �F2 and 
�P12 compared to others are shown in Table 4. It can be 
seen that ISE for COA are the smallest. For COA, the 
reductions in the maximum deviations of �F1 , �F2 and 
�P12 are greater than other optimizers (Table  4). Thus, 
the overall conclusion is that COA is the most robust and 
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benchmarked optimizer. COA is tested in the next sce-
nario in real weather conditions.

4.4  Scenario 4: robustness of COA in varying weather 
conditions

Here, COA is validated (including FOPID) using real 
measurements at Zafarana in Egypt [35] for tempera-
ture, irradiance and wind speed. Four-day samples of 

temperature, irradiance and wind speed are recorded in 
Fig. 13, and the system responses �F1 , �F2 and �P12 due 
to real weather data are illustrated in Fig. 14. The maxi-
mum deviation in frequency for the two-area power sys-
tem is −0.001281 pu (−0.06405  Hz) which is a secure 
value according to the operation of the under frequency 
load shedding relays [53]. It can be seen that the system 
behaves satisfactorily in real weather conditions. Thus, 

Fig. 6 Flowchart of COA optimizer
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COA proves its robustness and can be a promising and 
benchmarked optimizer.

In summary of the performance of COA and from the 
optimization results of PID controllers, we see that COA 
gives the best objective function. In addition, COA gives 
the best fitness function for the optimization of FOPID 
controllers. The fitness function of FOPID is 28.88% less 
than that of PID because the FOPID controller has more 
decision parameters and hence a higher degree of free-
dom. Therefore, FOPID is included in the validation and 
benchmarking scenarios. COA also shows its robustness 
under variable stiff load disturbances in the 3rd scenario, 

Fig. 7 Comparison of ISE convergence for the five used optimizers of 
the two‑area power system including PID controllers

Fig. 8 System responses due to + 0.05 pu step load change in Area 1 
while including PID controller a �F1 , b �F2 , c �P12

Table 2 Parameters of PID controllers

Parameter PSO WCA HBA AOS COA

KP1 −1.5710 −2.5854 −3.0000 −3.0000 −3.0000

Kd1 −2.9629 −0.6201 −3.0000 −3.0000 −2.8049

Ki1 −2.5130 −2.7656 −3.0000 −3.0000 −2.9959

KP2 −1.2623 −1.6248 −3.0000 −3.0000 −0.4804

Kd2 −2.0399 −1.3508 −3.0000 −3.0000 −2.7286

Ki2 −0.8412 −0.6896 −0.4000 −0.5696 −0.53057

KP3 −2.8177 −0.8436 −3.0000 −3.0000 −2.3027

Kd3 −1.0046 −0.9239 −3.0000 −1.8042 −0.4000

Ki3 −2.4193 −2.8433 −3.0000 −3.0000 −2.9397

τW 29.7104 7.3959 30.0000 30.0000 14.7056

Kβ 27.1451 18.0232 41.7032 50.0000 10.0000

Rwt 0.1745 0.2006 0.3000 0.1686 0.101994
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while it also behaves satisfactorily in real weather condi-
tions in the 4th scenario.

In the studied cases, COA optimizer behaves better 
than other optimizers. This is because COA has four 
different coots moving strategies on the water surface: 
random to this side and that side; chain movement; 
movement adjustment according to the leader; and leader 
movement. The random movement helps to explore the 
search space, while the algorithm has immunity to being 
stuck in local minima by updating the new position, as 

Fig. 9 Comparison of ISE convergence for the five optimizers of the 
two‑area power system including FOPID controllers

Fig. 10 System responses due to + 0.05 pu step load change in Area 
1 while including FOPID controller a �F1 , b �F2 , c �P12

Table 3 Optimal parameters of FOPID controllers

Parameters PSO WCA HBA AOS COA

KP1 −2.2754 −3.0000 −3.0000 −2.8961 −2.9923

Kd1 −2.9885 −1.0941 −0.4974 −2.5512 −2.9951

Ki1 −2.1337 −2.6009 −3.0000 −2.0296 −2.9963

�1 1.1628 1.1499 0.6951 1.1039 0.8981

µ1 0.5785 0.6957 1.5000 0.8235 0.6212

KP2 −2.0994 −1.7360 −0.4000 −2.0270 −1.5198

Kd2 −2.2324 −3.0000 −3.0000 −0.8984 −2.0910

Ki2 −1.1722 −0.6284 −0.4201 −1.5313 −1.5401

�2 1.0357 1.0972 0.9776 1.0640 0.9851

µ2 1.2783 1.3344 1.5000 0.8986 0.8889

KP3 −2.2041 −2.7547 −3.0000 −2.6479 −1.7242

Kd3 −1.8897 −3.0000 −0.4017 −0.4000 −1.3896

Ki3 −2.3044 −2.2270 −3.0000 −2.4039 −2.9688

�3 0.9339 1.1775 0.7186 0.8567 0.7946

µ3 0.9786 0.9378 1.5000 1.3548 1.0835

τW 18.7768 25.0082 30.0000 28.8367 14.7073

Kβ 23.6464 33.2494 50.0000 46.8303 19.4407

Rwt 0.2149 0.1992 0.1000 0.1895 0.2110
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described by (16). Extensive movement toward the opti-
mum area are assured by the leader’s movement. The 
coots may move in a chain or toward group leaders ran-
domly, and this helps to preserve the random nature of 
the algorithm.

5  Conclusion
In this paper, an efficient LFC has been performed on a 
two-area power system using robust FOPID controllers. 
This two-area power system contains steam and hydro 
generators integrated with a high penetration of RES 
such as PV panels and WTs. The five optimal parameters 
of the FOPID controllers which satisfy the best value of 
ISE are obtained by the COA. The robustness of the COA 
is validated through four scenarios with comparisons to 
other benchmarked optimizers including PSO, WCA, 
HBA and AOS. Optimization is first performed while 
including traditional PID controllers and the results con-
firm that the COA results in the smallest ISE . The results 
of the 1st scenario show that ISE with COA is less than 
AOS, HBA, WCA and PSO by 20.01%, 27.86%, 95.8% and 
103.94%, respectively. Then, optimization is performed 
while traditional PID controllers are replaced by FOPID 
controllers. The results of the optimization shed light on 
the robustness of FOPID controllers based on the COA 
approach. The results of the 2nd scenario show that ISE 
with COA is less than AOS, HBA, PSO and WCA by 
26.67%, 74.85%, 97.82% and 154.12%, respectively. In the 
3rd scenario, the system responses are observed while 
the two-area power system is subjected to variable load 
disturbances. The results illustrate that ISE with COA is 
less than PSO, AOS, WCA and HBA by 25.68%, 37.3%, 
54.58% and 64.8%, respectively. Finally, the performance 
assessment of FOPID optimized by the COA is examined 
in real weather conditions. This results in a maximum 

frequency deviation of −0.06405  Hz. The results illus-
trate the efficiency and applicability of the proposed 
FOPID controllers based on a COA approach.

Fig. 11 Variable step load change in Area 1

Fig. 12 System responses due to various step load changes in Area 1 
while including FOPID controller a �F1 , b �F2 , c �P12
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Table 4 Reductions in �F1 , �F2 and �P12 deviations due to 3 step load changes using COA

Optimizer �F1 �F2 �P12

1st (%) 2nd (%) 3rd (%) 1st (%) 2nd (%) 3rd (%) 1st (%) 2nd (%) 3rd (%)

PSO 4.30 6.16 4.48 5.97 19.53 14.52 28.10 10.23 16.73

WCA 21.15 25.02 23.13 – 10.48 4.84 80.27 53.42 63.49

HBA – – – 44.78 30.85 38.71 51.08 49.99 47.68

AOS – – – 25.37 32.29 25.81 0.54 7.38 12.92

Fig. 13 Real weather conditions at Zafarana aT , b G , c Vw

Fig. 14 System responses due to real weather conditions a�F1 , b 
�F2 , c �P12
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