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Abstract 

In the presence of an MMC-HVDC system, current differential protection (CDP) has the risk of failure in operation 
under an internal fault. In addition, CDP may also incur security issues in the presence of current transformer (CT) 
saturation and outliers. In this paper, a current trajectory image-based protection algorithm is proposed for AC lines 
connected to MMC-HVDC stations using a convolution neural network improved by a channel attention mechanism 
(CA-CNN). Taking the dual differential currents as two-dimensional coordinates of the moving point, the moving-point 
trajectories formed by differential currents have significant differences under internal and external faults. Therefore, 
internal faults can be identified using image recognition based on CA-CNN. This is improved by a channel attention 
mechanism, data augmentation, and adaptive learning rate. In comparison with other machine learning algorithms, 
the feature extraction ability and accuracy of CA-CNN are greatly improved. Various fault conditions like different net-
work structures, operation modes, fault resistances, outliers, and current transformer saturation, are fully considered to 
verify the superiority of the proposed protection algorithm. The results confirm that the proposed current trajectory 
image-based protection algorithm has strong learning and generalizability, and can identify internal faults reliably.

Keywords  Channel attention mechanism, Convolutional neural network (CNN), Differential current, Current 
trajectory image, Modular multilevel converter-based high voltage direct current (MMC-HVDC)

1  Introduction
In recent years, modular multilevel converter-based high 
voltage direct current (MMC-HVDC) technology has 
been rapidly developed as a result of its modular struc-
ture, ease of manufacturing, independent control of reac-
tive and active power, and low switching losses [1]. With 
these characteristics, it has broad application in long-
distance power transmission, offshore wind power grid 
connection [2], asynchronous interconnection, and large 
capacity power transmission.

The fault current characteristics of MMC-HVDC are 
somewhat different from those of synchronous gen-
erators because of the high controllability and limited 
overcurrent capacity of an MMC-HVDC, so that con-
ventional relaying protection schemes may operate 
incorrectly [3]. References [4–6] investigate the influ-
ence of VSC-HVDC on the distance protection of AC 
lines connected to it, but a corresponding solution is not 
provided. In [7], a zone I distance relaying protection 
scheme is proposed for the degradation of the distance 
protection performance caused by the integration of 
MMC-HVDC, one which can accurately identify inter-
nal faults. However, the proposed scheme cannot oper-
ate accurately under symmetrical faults. The authors 
in [8] propose a primary protection scheme based on 
improved distance protection and fiber-optic communi-
cation, which can operate correctly under all fault types. 
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However, there are still some limitations, such as the ina-
bility to identify fault phases and slow operation in some 
cases. In [9], a pilot protection scheme based on the ratio 
of the currents on both terminals of the transmission 
line is proposed. Although it can identify faults of lines 
emanating from the VSC-HVDC system, it cannot iden-
tify the fault phase and has a high risk of maloperation 
under high-resistance faults. References [10–13] propose 
new current differential protection schemes for the AC 
lines connected to wind farms. However, different from 
wind farms, an MMC-HVDC station has both rectifier 
and inverter modes, so the proposed schemes in [10–13] 
may operate incorrectly in some cases. Additionally, the 
schemes in [10–13] do not have good tolerance against 
some nonideal conditions during an external fault, e.g., 
CT saturation and outliers. Reference [14] proposes an 
enhanced current differential protection scheme that 
has good performance in different operational modes of 
the MMC. However, two additional methods are intro-
duced to eliminate the negative effects of CT saturation 
and outliers, considerably increasing the complexity 
of the protection scheme. Reference [15] puts forward 
time-domain pilot protection for lines connecting MMC-
HVDC stations. However, its operating performance 
depends heavily on the reasonable selection of protection 
thresholds. Considering the rapid increase of the num-
ber and capacity of MMC-HVDC projects and the draw-
backs of existing protection algorithms, it is imperative to 
have a new proposal for the protection of AC transmis-
sion lines connected to MMC-based converter stations. 
Given the rapid development of artificial intelligence 
and its wide application in various industries, using arti-
ficial intelligence to solve relay protection problems has 
become a new way of thinking.

Deep learning, as a representative of artificial intelli-
gence techniques, has strong nonlinear fitting and feature 
expression ability. It can extract fault information from 
complex and multi-variable fault data. Therefore, in relay 
protection, artificial intelligence technology has broad 
application prospects. Reference [16] proposes a new 
method for transmission line fault detection and clas-
sification based on a convolutional sparse autoencoder, 
which has high accuracy of fault detection and classifi-
cation. In [17], a method is presented for detection and 
classification of transient faults based on a graph convo-
lutional neural network. However, the graph convolution 
is less flexible and cannot deal with dynamic grid struc-
ture. Reference [18] introduces a CNN-based fault clas-
sification method using the Hilbert-Huang transform to 
build the time-frequency energy matrix of the fault sig-
nal as the input matrix of the CNN. However, the data-
sets constructed by this method are too complex to be 
applied in practice. Reference [19] performs continuous 

wavelet transform on the zero-sequence current signal 
to obtain a time-frequency grayscale image. A method 
of faulty feeder detection based on CNN trained by gray-
scale images is proposed, while [20] proposes a fault loca-
tion method based on an adaptive CNN. It has high fault 
recognition accuracy and fast convergence speed. Refer-
ence [21] measures the zero-sequence currents at both 
sides of the line to obtain the characteristic waveform, 
and uses a 1-D CNN for fault location. This does not 
require massive amounts of data for training. However, 
references [19–21] can only detect ground faults with-
out considering other fault types. Most existing solutions 
that combine artificial intelligence with relay protection 
also choose to apply machine learning and deep learn-
ing to fault identification and detection, and the accuracy 
rate still needs to be improved. Specifically, the applica-
tion of deep learning to the protection algorithm for AC 
lines connected to MMC-HVDC stations still needs to be 
studied in conjunction with the specific fault character-
istics of MMC-based converter stations. Garnered from 
the literature review, the pros and cons of different pro-
tection schemes are summarized in Table 1.

The key contributions of this paper are:

1.	 The concept of current trajectory image is developed. 
The difference of current trajectory image under 
various fault conditions and nonideal conditions, 
including severe internal fault, high-resistance inter-
nal fault, external faults, CT saturation and outliers, 
is analyzed. The method of discriminating between 
internal and external faults by means of current tra-
jectory image is introduced.

2.	 A protection algorithm based on image recognition 
of the differential current trajectory is proposed. A 
CNN is adopted for image recognition to distinguish 
between internal and external faults under different 
conditions.

3.	 To improve recognition accuracy, convergence speed, 
and robustness of the CNN, three improvement 
methods are introduced: channel attention mecha-
nism, adaptive decay learning rate, and data augmen-
tation. Compared with other advanced algorithms, 
e.g., KNN, decision tree, ANN, and CNN, CA-CNN 
has higher recognition accuracy and can identify 
internal faults reliably.

The rest of the paper is as follows: Sect. 2 describes the 
current trajectory image formed by differential currents, 
and analyzes the difference of current trajectory images 
between internal and external faults. Section 3 introduces 
the implementation steps of the current trajectory image-
based protection algorithm and the improvement meth-
ods of CA-CNN. In Sect. 4, a simulation model is built to 
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generate data sets, and the effectiveness and superiority 
of the proposed scheme are evaluated by comparing CA-
CNN with other algorithms. Finally, the conclusions are 
summarized in Sect. 5.

2 � Current trajectory image formed by dual 
differential currents

Different from traditional synchronous generators, the 
fault current of an MMC-HVDC system has a limited 
amplitude and controlled phase angle. This is attributed 
to the overcurrent capability of the fully controlled power 
electronic devices and the highly controllable characteris-
tics of the converter station. Because of the above special 
fault characteristics, the traditional current differential pro-
tection algorithm may undergo performance degradation 
or even give incorrect operation in the presence of MMC-
based converter stations [14]. In addition, some nonideal 
conditions during external faults, e.g., CT saturation and 
outliers, also negatively affect the security of the differential 
protection. Consequently, it is essential to propose a novel 
protection algorithm capable of replacing CDP for AC lines 
connected to the converter stations.

Differential current is defined as the summation of the 
currents on the grid side and the converter station side of 
a line. This includes all information about the fault cur-
rents on both sides of the transmission line. If the infor-
mation of fault currents can be fully exploited, internal 
and external faults can be theoretically distinguished. 
The key to the matter is how to make adequate use of 
the current information, for which the method based on 
current trajectory images formed by dual differential cur-
rents is proposed to obtain information to identify inter-
nal faults.

2.1 � Analysis of differential current waveforms
Figure 1 shows a simplified model of an AC grid connected 
with an MMC-HVDC station. The buses M and N repre-
sent the buses on the converter station side and grid side, 
respectively. im (Im) and in (In) are the currents flowing to 
the line by bus M and bus N, respectively.

When internal faults occur in the AC line connected to 
an MMC-HVDC station, as illustrated in Fig. 1, the differ-
ential current id is composed of the fundamental frequency 
AC component and the decaying DC component [22], 
expressed as:

In (1), Iac is the amplitude of the fundamental frequency 
AC component, Idc is the initial value of the decaying 
DC component, ω0 is the fundamental frequency of the 
power grid, φac denotes the initial phase angle, T repre-
sents the decaying time constant, which is inversely pro-
portional to the fault resistance.

The decaying DC component is related to the fault 
resistance. The decaying time constant decreases as the 
fault resistance increases, and the DC component con-
tained in the differential current also decreases. The 
waveforms of the differential current when there are 
internal faults with small and large fault resistances are 
shown by the black lines in Fig. 2.

When external faults occur, the currents of the grid 
and the converter sides have equal amplitudes and oppo-
site directions, and the differential current is approxi-
mately zero. The waveform of differential current under 
an external fault is shown by the black line in Fig. 3a. CT 
saturation can cause the measured differential current to 

(1)id = in + im = Iac cos(ω0t + ϕac)− Idce
−t/T

Table 1  Pros and cons of existing protection schemes

Protection scheme Pros (merits) Cons (demerits)

Frequency-Domain based 
scheme [7–9, 14]

The fault behaviors of MMC are considered. Thus, they 
can operate well in the presence of MMC-HVDC stations

Inherent demerits of frequency-domain based scheme 
include the requirement of discrete Fourier transform, the 
negative effect of decaying DC component on accuracy 
of phasor estimation
Some of them have no natural phase selection capability 
[7–9]

Time-Domain based scheme 
[10–13, 15]

Discrete Fourier transform is removed. They exhibit good 
operating speed and low complexity

Some of them are not applicable to MMC-HVDC stations. 
Furthermore, they do not have excellent tolerance against 
some nonideal conditions, and therefore may operate 
incorrectly during an external fault in the presence of CT 
saturation, and outliers [10–13]
Operating performance depends heavily on the reason-
able selection of protection threshold [15]

Deep learning- based scheme 
[16–21]

Existing solutions that combine deep learning with 
relay protection focus on two aspects: fault classification 
[16–18] and fault location [19–21]. Deep learning has 
strong nonlinear fitting ability, feature expression ability

The fault behavior of the MMC-based converter station 
is not considered, and the proposed method may have 
adaptability problems for lines connected to MMC-HVDC. 
Some of them can only detect ground faults without 
considering other fault types [19–21]
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deviate from zero. The black line in Fig. 3b shows the dif-
ferential current waveform under an external fault with 
severe CT saturation.

The CT saturation distorts the differential current. This 
should be approximately zero in the condition of external 
faults. If the amplitude of the differential current is taken 
as the criterion of relay protection, as is the case in CDP, 
CT saturation will seriously affect the judgment on the 
occurrence of external faults, potentially misidentifying 
external faults as internal.

2.2 � Trajectory of the moving point constructed 
by differential currents

In order to fully exploit the information of the differential 
current, the differential current is delayed by 1/4 cycle as 
shown by the red dashed lines in Figs. 2 and 3. Taking the 
differential current id and delayed differential current i′d 
as two-dimensional coordinates of the moving point, the 
moving point (id , i′d) forms a trajectory, one which can 
efficiently differentiate between internal and external 
faults under various conditions, such as different fault 
resistances, types, locations, CT saturation, and outliers.

1.	 Internal Faults

When internal faults occur, the delayed differential cur-
rent i′d is given by [15]:

Usually, T > > T0/4, ω0T0 = 2π, whereby the following 
relation can be obtained:

Figure  4 shows the formation process of a moving-
point trajectory formed by differential currents when 
internal faults occur.

If the fault resistance is large, as shown in (1), the 
decaying DC component contained in the differential 
current is small and can be ignored. The differential cur-
rent can be simplified as id = Iac cos(ωt) . After a delay of 
1/4 cycle, i′d = Iac sin(ωt) . As shown by the green wave-
forms in Fig. 4, the time-varying cosine and sine signals 

(2)
i′d = id(t −

T0

4
)

= Iac cos(ω0t − ω0

T0

4
+ ϕac)− Idce

−(t−
T0
4
)/T

(3)i′d ≈ Iac sin(ω0t + ϕac)− Idce
−t/T

are mapped to the x-axis and y-axis respectively, and 
the trajectory of the moving point (id , i′d) is a circle. The 
radius of the circle is determined by the amplitude Iac of 
the sine and cosine signals. If the fault resistance is small, 
the decaying DC component cannot be ignored. The 
addition of the DC component offsets the center of the 
moving-point trajectory formed by the differential cur-
rents, as shown by the red waveforms in Fig. 4. As the DC 
component decays the center of the moving-point trajec-
tory gradually approaches the origin.

2.	 External Faults

Under normal conditions or external faults, the differ-
ential current is approximately zero, so the trajectories 
of moving points constructed by differential currents 
in this case are concentrated near the origin. When 
id ≈ 0, i′d �= 0 , the moving-point trajectory is on the 
y-axis, and when id  = 0, i′d ≈ 0 , the moving-point trajec-
tory is on the x-axis. As shown in Fig.  3b, for the con-
dition of an external fault with severe CT saturation, the 
moving-point trajectory formed by differential currents 
is near the x-axis and y-axis, except for the period just 
after the fault occurrence, when both id and i′d are not 
equal to zero and the moving-point trajectory formed by 
differential currents is not near the x-axis nor y-axis.

Intercepting the moving-point trajectory formed by 
differential currents starting from T0/4 after the fault 
occurrence and lasting for one power frequency period, 
the moving-point trajectories formed by differential 
currents under various conditions are shown in Fig.  5. 
Figure  5a–c show the trajectories of moving points 

Fig. 1  Simplified model of AC grid connected with MMC-HVDC 
station

Fig. 2  Waveforms of the differential current under internal faults. a 
Small fault resistance. b Large fault resistance
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constructed by differential currents under an inter-
nal fault, while Figs. 5d–f show the trajectories of mov-
ing points constructed by differential currents under an 
external fault.

According to the above analysis, there is a signifi-
cant difference in the trajectories of moving points con-
structed by differential currents between internal and 
external faults. Therefore, it is feasible to fulfill the dif-
ferentiation of internal and external faults by means of 
current trajectory image, and realize the appropriate 
operation of relays of AC lines connected to the MMC-
based converter stations.

3 � Current trajectory image‑based protection 
algorithm

The current trajectory image-based protection algorithm 
using a convolutional neural network improved by chan-
nel attention mechanism (CA-CNN) proposed in this 
paper is shown in Fig. 6. The implementation steps of this 
algorithm can be summarized as follows.

1.	 Collect the current information at both ends of the 
line, and calculate the dual differential currents id and 
i′d to obtain the image of differential currents trajec-
tory formed by moving point (id , i′d) . The images are 
preprocessed by unifying the coordinate axis range and 
the image size, and are converted into grayscale images.

2.	 Consider a variety of different situations to generate 
data sets, design the model architecture of the CNN, 
normalize the data sets and divide them into the 
training set and test set, and then train the CNN to 
obtain the optimal model parameters.

3.	 After the model is trained, fault identification of 
unknown transmission lines can be carried out by 
feeding the normalized current trajectory images of 
the three phases to the CNN, to allow accurate dif-
ferentiation between internal and external faults in 
addition to identifying the fault phases.

3.1 � Convolutional neural network
A CNN is a feedforward neural network, extensively used 
for its powerful feature extraction capability in the field 
of image recognition. Compared with machine learning 
algorithms, a CNN has three prominent features: sparse 
connectivity, parameter sharing, and down sampling. On 
the one hand, these features considerably decrease the 
network parameters and reduce the complexity of the 
model, and on the other, they further reduce the risk of 
overfitting, so a CNN offers a substantial benefit in two-
dimensional image processing with good robustness and 
computational efficiency.

The CNN structure contains three main parts: convolu-
tion, pooling, and fully connected layers. The convolution 
layer realizes feature extraction through the convolution 
kernel. This is equivalent to a weight matrix, and the con-
volution kernel slides on the feature map with a fixed step 
size to realize local feature extraction. Different convolu-
tion kernels correspond to different local features.

The operation performed by each convolution kernel 
sliding on the feature map is:

Fig. 3  Waveforms of the differential current under external faults. a 
Without CT saturation. b With severe CT saturation

Fig. 4  The formation process of moving-point trajectory formed by 
differential currents when internal faults occur
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where l represents the number of layers, xl represents the 
feature map matrix of the current layer, xl−1 is the fea-
ture map matrix of the previous layer, Wl is the convolu-
tion kernel weight matrix, “·” represents the dot product 
operation, b represents the bias, and f() represents the 
excitation function.

Pooling is actually a down-sample process. The pool-
ing layer is between consecutive convolutional layers and 
is used to reduce the number of parameters. This can 
improve operational speed and prevent overfitting while 
retaining useful information. The pooling method refers to 
using the overall statistical characteristics of the adjacent 
square regions to replace the output of that position, with-
out increasing the parameters required for training. For 
example, max pooling indicates that the maximum value 
within adjacent square regions is taken as the output.

The fully connected layer unfolds the feature maps out-
put from the convolution layer and pooling layer into a 
one-dimensional matrix that acts as “classifier” through-
out the CNN. The two outputs represent the probabil-
ity of the faults judged as internal and external faults 
respectively.

The training processes of the CNN are: first, the net-
work parameters are initialized randomly, and then the 
training image is taken as the input to the CNN, to per-
form forward propagation operations of the convolution, 
pooling, and fully connected layers, and to calculate the 
corresponding output probability of each category. Finally, 
the error between output values and actual values is cal-
culated, and all network parameters are updated by the 
gradient descent method to minimize the output error.

(4)xl = f (Wl · xl−1 + bl)

Fig. 5  The trajectories of moving points constructed by differential 
currents under diverse conditions. a Internal fault with large fault 
resistance. b Internal fault with small fault resistance. c Internal fault 
with severe CT saturation. d External fault or the normal condition. e 
External fault with severe CT saturation. f External fault with outliers

Fig. 6  The procedure of the proposed current trajectory image-based protection algorithm
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3.2 � Improvement measures
To further improve the recognition accuracy, training 
speed and generalizability of the CNN, three measures 
are proposed: channel attention mechanism, adaptive 
decay learning rate, and data augmentation. The struc-
ture of the improved CNN (CA-CNN) for the current 
trajectory image-based protection algorithm is shown in 
Fig. 7. In Fig. 7, “FC” represents the fully-connected layer, 
“GAP” represents global average pooling, “f” represents 
the number of convolution kernels, and “s” represents the 
stride size.

1.	 Channel Attention Mechanism

An attention mechanism is added to boost the repre-
sentational capabilities of the network and the accuracy 
of fault identification. The fundamental thought behind 
the attention mechanism is that the model learns to con-
centrate on important information and ignore inconse-
quential information [23, 24]. By learning the importance 
of each channel, the important features are weighted 
according to their importance, and the weight of unim-
portant features is reduced. This is called the channel 
attention mechanism.

Figure  8 shows the basic principle of the mechanism. 
The feature map is convolved with a convolution kernel 
to generate the first channel of the next layer. There are 
“f” convolution kernels, so the number of channels in the 
next layer is C2, which is equal to f. The channel attention 
mechanism performs a weighting operation on the chan-
nels, learns the weights through the neural network, and 
increases the weights for important channels and reduces 
the weights for unimportant channels, corresponding 
to the depth of the color, as in Fig. 8. The channel of the 
next layer is related to the convolution kernel. Therefore, 
the channel attention mechanism is also equivalent to 
weighting the convolution kernel, evaluating the features 
extracted by each convolution kernel, adding weights to 
important features and reducing weights of unimportant 
features.

For the specific channel attention model structure 
shown in Fig.  7, H, W, C represent the height, width, 
and channel of the feature map, respectively. Global 
average pooling (GAP) is to average each channel of the 
feature map [25], and change the size of the feature map 
from H × W × C to 1 × 1 × C while retaining the feature 
map information. The output of the previous layer is 
connected to the global average pooling and fully con-
nected layers, and a sigmoid activation function to gen-
erate a 1 × 1 × C weight matrix. This is multiplied by 
the output of the previous layer to form the input of the 
next layer.

2.	 Adaptive Decay Learning Rate

The learning rate is one of the important hyperparam-
eters for training neural networks, and determines how 
fast the network learns. During network training, the 
model gives predicted values through forward propaga-
tion, calculates the cost function and adjusts parameters 
through backpropagation. The above process is repeated 
so that the model parameters progressively approach 
the optimal solution and the optimal model is obtained. 
Within this process, the learning rate is the one in charge 
of controlling the step size of the process of parameter 
update.

If the learning rate is large, the parameter update speed 
will be very fast, which can achieve fast network conver-
gence. However, if the learning rate is too large, it may 
lead the parameters to be updated in the wrong direction 
and consequently the cost function may explode instead 
of converge. If the learning rate is small, the network may 
not miss the optimal point, but the network will learn 
slowly. In addition, it may be trapped in a local optimum 
if the learning rate is too small.

An adaptive decay learning rate is thus proposed. Early 
in the training of the network, a relatively large learning 
rate will be selected to accelerate the convergence of the 
network. The learning rate then gradually decreases as 
the number of iterations increases to ensure that the net-
work eventually converges to the global optimal solution, 
instead of oscillating or exploding in its vicinity. The for-
mula for the learning rate α is given as:

where α0 indicates the initial learning rate.

(5)α =
α0 epoch ≤ N

α0e
0.2(N−epoch) epoch > N

Fig. 7  Structure of CA-CNN
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According to (5), when the number of epochs is greater 
than N, the learning rate begins to decay. Faster conver-
gence and higher accuracy can be achieved when setting 
N = 5.

3.	 Data Augmentation

Image classification relies on a large amount of labeled 
data to train the model, and the limitation of the data set 
size will bring problems such as overfitting and low gen-
eralizability of the model. Data augmentation uses lim-
ited data to generate numerous equivalent data, allowing 
for a greater number and diversity of training samples, 
and can improve the robustness of the model.

Using left-right translation and up-and-down trans-
lation to generate more equivalent data, this reduces 
overfitting and gives the resultant model stronger gener-
alizability. The image of the dataset generated by simula-
tion is in an ideal state. The actual collected image data is 
relatively fuzzy, and it is easy to identify errors. Adding 
noise to the training data can both enhance the robust-
ness of the model and diminish the susceptibility of the 
model to image quality.

4 � Performance evaluation
4.1 � Data set
In order to construct a great deal of labeled data sets of 
current trajectory image required for deep learning, the 
IEEE 39-bus system with a 200  MW MMC-HVDC sys-
tem is built in PSCAD/EMTDC, as shown in Fig. 9. The 
length of the transmission line 1–2 is 50  km, and the 
parameters can be found in [26, 27].

The current trajectory images are different under dif-
ferent fault conditions. A set of data is generated by fully 
considering the effects of different fault types, resist-
ances, and locations, as well as different operational 
modes of the converter, CT saturation, and outliers. The 
specific parameters are shown in Table 2. As the data set 
fully considers various situations, the neural network can 
quickly learn useful information from a lot of data and 
improve the accuracy of fault identification.

A total of 3272 sample data are obtained from the sim-
ulated experiments by parameter traversal, and the data 

are randomly subdivided into a training set and a test set 
in the ratio of 8:2, i.e., the sizes of training and test sets 
are 2618 and 654, respectively.

4.2 � CNN training and testing results
The CA-CNN structure is shown in Fig.  7, using adap-
tive decay learning rate with the initial value of α0 = 0.01. 
The data set is fed into the CA-CNN and the CNN, and 
the training set is used to train the model. The test set is 
then used for testing the accuracy of the model to verify 
its validity.

The neural networks are trained and tested for 10 
cycles on the 3272 dataset, and the results are shown 
in Fig. 10. When the epoch is 10, the accuracies of the 
CNN training set and test set are 98.97% and 99.07% 
respectively, while the accuracies of the CA-CNN train-
ing set and test set are 99.89% and 100%, respectively. 
The CA-CNN enhances the accuracy of the model 
while the convergence speed is significantly faster than 
that of the CNN. It is also found that the accuracy of 
the network increased rapidly in the early stages of 
training. When the epoch is 4, the accuracies of the 
training set and the test set both reach over 98%.

To investigate the effects of the three methods of 
attention mechanism, decay learning rate, and data 
augmentation on the CNN, the accuracies of the train-
ing and test sets are shown in Table  3 by combining 
each of these three methods with the CNN.

As can be seen from Table 3, combining each of the 
three methods mentioned in SubSect.  3.2 with the 
CNN model alone, and the addition of all three meth-
ods increases the accuracy of the model compared to 
the simple CNN model.

4.3 � Comparison of different algorithms
To evaluate the superiority of the CA-CNN, some exist-
ing machine learning algorithms such as K-Nearest 
Neighbor (KNN), Decision Tree, Artificial Neural Net-
work (ANN) are compared with the CA-CNN. These 
methods are briefly described as follows.

1.	 The KNN algorithm uses the distance between sam-
ples to judge similarity. It calculates the distance 
between the unknown sample and all training sam-
ples, and obtains K training samples with the closest 
distance. If most of the K samples which are similar 
to the unknown sample belong to a certain category, 
the unknown sample also belongs to this category.

2.	 Decision tree is an algorithm that learns the classifi-
cation rules in the data set through decisive features 
and divides the unknown data set. The decision tree 
is constructed by selecting features through informa-

Fig. 8  The fundamental principle of the channel attention 
mechanism
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tion gain. In order to prevent overfitting, the decision 
tree needs to be pruned.

3.	 ANN refers to a network structure that consists of a 
massive number of interconnected neurons, which 
are used to simulate the organizational structure and 
operation mechanism of the brain. An ANN mainly 
involves input, hidden and output layers. This paper 
adopts an ANN structure with five hidden layers, 
and the numbers of neurons are 256, 128, 64 and 32, 
respectively.

We input the same training set and test set, and the test 
results of different algorithms are shown in Table 4.

As shown in Table 4, the proposed CA-CNN fault iden-
tification method has higher accuracy than KNN, Decision 
Tree and ANN. The results verify the effectiveness and 
superiority of the CA-CNN by extracting the information 
of the input data through multiple convolution layers.

The comparisons of different algorithms under differ-
ent fault types, locations, and resistances are shown in 
Fig. 11.

As shown in Fig. 11a, different algorithms exhibit dif-
ferent fault identification accuracies under different fault 
types. KNN has the lowest accuracy and the CA-CNN 
has the highest  accuracy. Similarly, the CA-CNN offers 
the highest fault identification accuracy under different 
fault locations and resistances.

Overall, comparing the recognition accuracy of dif-
ferent algorithms under internal and external faults, 
as shown in Fig.  11d, different algorithms have higher 
recognition accuracy for external faults. The CA-CNN 
performs well for both internal and external faults.

The results show that CA-CNN has stronger general-
izability and higher accuracy than KNN, Decision Tree, 
ANN, and CNN under various fault conditions.

4.4 � Comparison of CDP and Proposed Protection 
Algorithm

We refer to the current reference direction in Fig. 1. The 
criterion of current differential protection (CDP) for an 
internal fault can be given by:

where K is the restraint coefficient. Im and In are the cur-
rents flowing to the line by bus M and bus N, respectively, 
while the bold font style represents a phasor.

If both ends of the AC transmission line are synchro-
nous generators, during an internal fault, the phase dif-
ference of the fault currents on both sides is an acute 

(6)
|Im + In|
︸ ︷︷ ︸

operating current

> K |Im − In|
︸ ︷︷ ︸

restraining current

Fig. 9  The IEEE 39-bus system with a MMC-HVDC system

Table 2  Conditions and parameters of the data set

Conditions Type

Fault range Internal fault, external 
fault, normal condition, 
outliers

Fault type AG, BC, ABG, ABC

Operation mode Rectifier, Inverter

CT Normal, Saturation

Fault resistance (Rf (Ω)) 5, 10, …50Ω(BC, ABC) 10, 
20, …. 100Ω(AG, ABG)

Fault locations 10%, 30%, 50%,70%, 90%

Fig. 10  Accuracy curves of CNN and CA-CNN

Table 3  The accuracy for the three methods added individually

Accuracy (%) CNN CNN + attention 
mechanism

CNN + decay 
learning rate

CNN + data 
augmentation

Training accuracy 98.97 99.96 99.89 99.66

Testing accuracy 99.07 100 100 100
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angle. As a result, operating current surpasses restraining 
current, and CDP can identify internal fault reliably, as 
shown in Fig. 12a. However, when an MMC-based con-
verter station is present and operates in rectifier mode, it 
is possible that the phase difference of the fault currents 
between the two sides of the AC line is an obtuse angle 
[14]. In this case, operating current may be lower than 
restraining current, causing CDP to have high probability 
of being ineffective, as shown in Fig. 12b.

When an external fault occurs, the phase angle dif-
ference between Im and In approaches 180°, and their 
amplitudes are close to each other. In this condition, 
|Im + In|≈0 and |Im − In|≈|Im| +|In|. Thus, |Im + In| is 
remarkably less than K|Im − In|, so CDP does not oper-
ate. However, the above analysis is no longer true in the 
presence of CT saturation. CT saturation results in seri-
ous distortion of secondary current, and consequently 
operating current has a high risk of exceeding restraining 
current, particularly for severe CT saturation. The false 
tripping signal may be generated and the situation is sim-
ilar in the presence of outliers.

In summary, two issues should be focused on: 1) When 
internal faults occur, CDP may fail to operate particularly 
in the rectifier mode of the converter station; 2) When 
external faults occur, CDP may misoperate in the pres-
ence of CT saturation or outliers.

For the above two problems, the current trajectory 
image-based protection algorithm is compared with 
CDP, and simulations are carried out according to differ-
ent conditions as shown in Table  5. The fault inception 
time is 2 s, and “√” and “ × ” in Table 5 represent correct 
and wrong identification results respectively.

The simulation waveforms of the 5 cases in Table 5 are 
displayed in Fig.  13, wherein the amplitude ratio repre-
sents |Im + In|/|Im − In|.

Figure 13a-d show that CDP does not correctly identify 
the faults in these four cases. As can be seen in Fig. 13a, 
b, CDP may not operate under high fault resistance when 
internal faults occur, whereas Fig. 13c, d show that CDP 
may misoperate in the case of CT saturation and outliers 
when external faults occur.

The current trajectories images generated under the 
same conditions are shown in Fig. 14. The current trajec-
tory images of each phase are fed into the trained CA-
CNN separately for identification and all the current 
trajectory images are identified correctly. The results 
demonstrate that the proposed algorithm outperforms 
CDP in protecting the AC lines connected to MMC-
based converter stations.

Fig. 11  Comparison of different algorithms under different 
conditions. a Different fault types. b Different fault locations. c 
Different fault resistances. d Internal fault and external fault

Table 4  Comparison of different algorithms

Algorithms Classification 
accuracy (%)

KNN 87.00

Decision tree 90.51

ANN 92.51

CNN 99.07

CA-CNN 100
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Fig. 12  Spatial relationship of current phasors. a Acute angle. b 
Obtuse angle

Table 5  Comparison of CDP and proposed protection algorithm

Case number Conditions CDP Proposed 
algorithm

Case 1 Internal fault
Fault type: AG
Rf: 100Ω
Fault location: 50%

Figure 13a
 × 

Figure 14a
√

Case 2 Internal fault
Fault type: AB
Rf: 50Ω
Fault location: 10%

Figure 13b
 × 

Figure 14b
√

Case 3 External fault with CT 
saturation
Fault type: ABC
Rf: 5Ω

Figure 13c
 × 

Figure 14c
√

Case 4 External fault with 
outliers
Fault type: ABG
Rf: 15Ω

Figure 13d
 × 

Figure 14d
√

Case 5 External fault
Fault type: AG
Rf: 20Ω

Figure 13e
√

Figure 14e
√

4.5 � Performance assessment under nonideal conditions
CT saturation, CT measurement errors, and capacitive 
currents may have a negative impact on the reliability 
of conventional protection schemes. To test the perfor-
mance of the proposed current trajectory image-based 
protection algorithm under these nonideal conditions, 
the following three experiments are performed.

(1)	 As described in Sect. 2.2, CT saturation distorts the 
differential current and thus affects the current tra-
jectory image, and different severity of CT satura-
tion needs to be considered. Setting different fault 
conditions and considering CT saturation of differ-
ent severities, 144 simulations are performed in the 
system shown in Fig.  9, and a total of 432 current 
trajectory images of three phases are obtained and 
fed into the trained CA-CNN for testing. All the 
faults are correctly identified, and the results are 
compared with other machine learning algorithms 
in Fig. 16.

(2)	 CT measurement errors cause the differential cur-
rent under external faults to no longer close to zero, 

which in turn causes the current trajectory image 
under external faults to no longer concentrate at the 
origin, as shown in Fig. 15. Considering CT meas-
urement errors of 3%, 6% and 10%, 432 current tra-
jectory images are constructed and all of them are 
correctly identified by the CA-CNN model, and the 
results of comparison with other machine learning 
algorithms are shown in Fig. 16.

(3)	 Similar to CT measurement errors, capacitive cur-
rents may adversely affect conventional protection 
schemes. The capacitance current is changed by 
varying the transmission line length, and 432 cur-
rent trajectory images are constructed by consid-
ering transmission line lengths of 100 km, 200 km 
and 300 km, all of which can be correctly identified 
by the CA-CNN. The results of comparison with 
other machine learning algorithms are also shown 
in Fig. 16.

As shown in Fig. 16, even in the nonideal cases of dif-
ferent CT saturation, CT measurement errors and capac-
itance currents, the CA-CNN still performs better than 
other algorithms, which fully demonstrates the superior-
ity of the proposed protection scheme.

4.6 � Active power reversal
An MMC-based converter station has two operational 
modes, i.e., rectifier and inverter. Reversal of power is 
realized in the simulation model. As shown in Fig. 17, the 
active power is gradually reversed from − 200 MW (− 1.0 
pu) to 200  MW (1.0 pu). During power reversal, three 
internal faults are set at t = 2, 2.09 and 2.15 s. The three cur-
rent trajectories corresponding to the three fault inception 
times are shown in Fig. 18.

The current trajectory images are fed into the trained 
CA-CNN model, and all three images are identified cor-
rectly. This shows that the proposed protection algorithm 
can accurately identify the fault when power is reversed.

In the case of external faults, the currents flowing 
through the two ends of the line remain approximately 
equal in amplitude and 180° out of phase, and the differen-
tial current id approximately equals 0. The generated cur-
rent trajectory images are concentrated near the origin and 
are not affected by the power reversal.

4.7 � Performance test based on images constructed 
by data obtained from RTDS‑based experimental 
system

To further validate the performance of the proposed 
current trajectory image-based protection algorithm, 
the RTDS-based experimental system shown in Fig.  19 
is used. The MMC-HVDC model is built in RTDS 
based on the actual engineering parameters of the YuE 
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interconnection MMC-HVDC project, while the actual 
control devices are used. The fault recorded data can be 
obtained from the RTDS-based experimental system. The 

length of the transmission line between the converter sta-
tion and the grid is 100 km, the positive sequence imped-
ance is (0.01839 + j0.263) Ω/km, and the zero sequence 
impedance is (0.1417 + j0.6027) Ω/km.

The effectiveness of the proposed current trajectory 
image-based protection algorithm is confirmed by con-
ducting experiments considering different fault condi-
tions, and the results are shown in Table 6. The proposed 
protection scheme is tested for correct operation under 
internal faults by changing the fault type, fault loca-
tion, fault resistance and operational mode. A total of 32 
internal fault experiments are carried out, and the CA-
CNN based protection algorithm correctly identifies all 
of them and distinguishes the fault phases. Compared 

Fig. 13  Simulation results of CDP under different cases. a Case 1. b 
Case 2. c Case 3. d Case 4. e Case 5

Fig. 14  The current trajectory images of the three-phase under 
different cases. a Case 1. b Case 2. c Case 3. d Case 4. e Case 5
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with the ANN and CNN, the accuracy of the CA-CNN 
is significantly higher. At the same time, internal faults 
that cannot be identified by traditional CDP are correctly 
recognized by the proposed algorithm. Thirteen external 
fault experiments are conducted by changing the fault 
type and operational mode and considering severe CT 
saturation and outliers. The experiments show that the 
CA-CNN can correctly identify external faults, does not 
misoperate when external faults occur, and is not affected 
by CT saturation and outliers. This contrast with CDP 
which is easily affected by CT saturation and outliers in 
the case of external faults, and is prone to false operation. 
CDP is correct in not operating for only 7 out of the 13 
external fault experiments, while the remaining 6 incor-
rect operations are all due to CT saturation and outliers.

Communication delay leads to data un-synchroniza-
tion, which has negative effect on the security of protec-
tion. Thus, the tolerance against communication delay is 
important for line protection. The communication delay 
in a fiber-optic cable is about 5 μs/km [28], so the delay 
for a 100 km transmission line is about 0.5 ms. To evalu-
ate the tolerance of proposed protection against com-
munication delay, a communication delay of 0.5  ms is 
considered in this paper.

The current trajectory images under external and 
internal faults with 0.5  ms communication delay are 
shown in Fig.  20. The current trajectory images are fed 
into the trained CA-CNN. The results are all correct, 
which shows that the proposed method is insensitive to 
the communication delay and can still correctly identify 
internal and external faults.

5 � Conclusion
To address the problem that the presence of an MMC-
HVDC station may lead to poor dependability of CDP 
under internal faults and incorrect operation under 
external faults, a current trajectory image-based protec-
tion algorithm using CA-CNN is proposed. The perfor-
mance of the proposed scheme is thoroughly evaluated 
using PSCAD and RTDS. The main conclusions are:

1.	 The moving-point trajectories formed by taking the 
dual differential currents as two-dimensional coor-
dinates of the moving points have significant differ-
ences between internal and external faults under dif-
ferent conditions. The CNN can accurately identify 
the images of moving-point trajectory and distin-
guish internal and external faults.

2.	 The feature extraction ability and convergence speed 
of a CNN are improved by introducing a channel 
attention mechanism, adaptive decay learning rate, 
and data augmentation. Compared with machine 
learning algorithms such as KNN, Decision Tree, and 

Fig. 15  The trajectory of moving points constructed by differential 
currents under external fault with CT measurement error

Fig. 16  Comparison of different algorithms under CT saturation of 
different severity, CT measurement, and capacitive current

Fig. 17  Active power waveform at converter station side

Fig. 18  The moving point trajectory under internal fault when the 
fault is set at: a 2 s. b 2.09 s. c 2.15 s
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ANN, the accuracy of fault identification of the CA-
CNN is superior.

3.	 The proposed current trajectory image-based protec-
tion algorithm performs well in discriminating accu-
rately between internal and external faults in addition 
to identifying the fault phase. The algorithm demon-
strates superb reliability and robustness, regardless of 
fault conditions and operational modes, and exhibits 
excellent performance even in the presence of CT 
saturation and outliers.

Acknowledgements
This work was supported in part by the Fundamental Research Funds for the 
Central Universities under Grant 2022JCCXJD01, in part by Training Program 
of Innovation and Entrepreneurship for Undergraduates of China University of 
Mining and Technology (Beijing) under Grant 202204009.

Author contributions
YL: methodology, reviewing and editing, supervision. YR: methodology, inves-
tigation, software, writing-original draft preparation, validation. JY: software, 
validation. WZ: methodology, investigation. All authors read and approved the 
final manuscript.

Funding
None.

Availability of data and materials
Not applicable.

Declarations

Competing interest
The authors declare that they have no known competing financial interests 
or personal relationships that could have appeared to influence the work 
reported in this paper.

Received: 10 October 2022   Accepted: 7 February 2023

References
	1.	 Nguyen, T. H., Hosani, K. A., & Moursi, M. S. E. (2019). Alternating submod-

ule configuration based MMCs with carrier-phase-shift modulation in 
HVdc systems for dc-fault ride-through capability. IEEE Transactions on 
Industrial Informatics, 15(9), 5214–5224.

	2.	 Yang, B., Liu, B., Zhou, H., Wang, J., Yao, W., Wu, S., Shu, H., & Ren, Y. (2022). 
A critical survey of technologies of large offshore wind farm integration: 
Summary, advances, and perspectives. Protection and Control of Modern 
Power Systems., 7(1), 17.

	3.	 Quispe, J. C., & Orduña, E. (2022). Transmission line protection challenges 
influenced by inverter-based resources: A review. Protection and Control of 
Modern Power Systems., 7(1), 1–7.

	4.	 Alam, M. M., Leite, H., Liang, J., & da Silva Carvalho, A. (2017). Effects of 
VSC based HVDC system on distance protection of transmission lines. 
International Journal of Electrical Power & Energy Systems., 92, 245–260.

	5.	 Alam, M. M., Leite, H., Silva, N., & da Silva Carvalho, A. (2017). Performance 
evaluation of distance protection of transmission lines connected with 
VSC-HVDC system using closed-loop test in RTDS. Electric Power Systems 
Research., 152, 168–183.

	6.	 Jia, K., Chen, R., Xuan, Z., Yang, Z., Fang, Y., & Bi, T. (2018). Fault characteris-
tics and protection adaptability analysis in VSC-HVDC-connected offshore 
wind farm integration system. IET Renewable Power Generation, 12(13), 
1547–1554.

	7.	 Liang, Y., Li, W., & Huo, Y. (2021). Zone I distance relaying scheme of lines 
connected to MMC-HVDC stations during asymmetrical faults: Problems, 
challenges, and solutions. IEEE Transactions on Power Delivery, 36(5), 
2929–2941.

	8.	 Liang, Y., Huo, Y., & Zhao, F. (2021). An accelerated distance protection of 
transmission lines emanating from MMC-HVdc stations. IEEE Journal of 
Emerging and Selected Topics in Power Electronics, 9(5), 5558–5570.

	9.	 Xue, S., Yang, J., Chen, Y., Wang, C., Shi, Z., Cui, M., & Li, B. (2016). The 
applicability of traditional protection methods to lines emanating from 
VSC-HVDC interconnectors and a novel protection principle. Energies, 
9(6), 400–426.

	10.	 Jia, K., Li, Y., Fang, Y., Zheng, L., Bi, T., & Yang, Q. (2018). Transient current 
similarity based protection for wind farm transmission lines. Applied 
Energy, 225, 42–51.

Fig. 19  Laboratory system built on RTDS and real control and 
protection equipment

Table 6  Comparison of different algorithm using RTDS

Fault 
range

Total 
test 
number

CA-CNN 
correctly 
identified

CNN 
correctly 
identified

ANN 
correctly 
identified

CDP 
correctly 
identified

Internal 
fault

32 32 28 25 25

External 
fault

13 13 13 13 7

Fig. 20  The current trajectory images of communication delay in 
different cases. a External fault with 0.5 ms communication delay 
(fault type: ACG). b Internal fault with 0.5 ms communication delay 
(fault type: BC)



Page 15 of 15Liang et al. Protection and Control of Modern Power Systems             (2023) 8:6 	

	11.	 Zhang, L., Jia, K., Bi, T., Fang, Y., & Yang, Z. (2021). Cosine similarity based 
line protection for large scale wind farms. IEEE Transactions on Industrial 
Electronics, 68(7), 5990–5999.

	12.	 Zhang, L., Jia, K., Wu, W., Liu, Q., Bi, T., & Yang, Q. (2021). Cosine similarity 
based line protection for large scale wind farms part II—the industrial 
application. IEEE Transactions on Industrial Electronics. doi:https://​doi.​org/​
10.​1109/​TIE.​2021.​30694​00.

	13.	 Saber, A., Shaaban, M. F., & Zeineldin, H. H. (2022). A new differential 
protection algorithm for transmission lines connected to large-scale 
wind farms. International Journal of Electrical Power & Energy Systems, 141, 
108220.

	14.	 Liang, Y., Ren, Y., & He, W. (2022). An enhanced current differential protec-
tion for AC transmission lines connecting MMC-HVDC stations. IEEE 
Systems Journal. https://​doi.​org/​10.​1109/​JSYST.​2022.​31558​81

	15.	 Liang, Y., Ren, Y., & Zhang, Z. (2023). Pilot protection based on two-dimen-
sional space projection of dual differential currents for lines connecting 
MMC-HVDC stations. IEEE Transactions on Industrial Electronics, 70(5), 
4356–4368.

	16.	 Chen, K., Hu, J., & He, J. (2018). Detection and classification of transmission 
line faults based on unsupervised feature learning and convolutional 
sparse autoencoder. IEEE Transactions on Smart Grid, 9(3), 1748–1758.

	17.	 Tong, H., Qiu, R. C., Zhang, D., Yang, H., Ding, Q., & Shi, X. (2021). Detection 
and classification of transmission line transient faults based on graph 
convolutional neural network. CSEE Journal of Power and Energy Systems, 
7(3), 456–471.

	18.	 Guo, M., Yang, N., & Chen, W. (2019). Deep-learning-based fault classifica-
tion using Hilbert-Huang transform and convolutional neural network in 
power distribution systems. IEEE Sensors Journal, 19(16), 6905–6913.

	19.	 Guo, M., Zeng, X., Chen, D., & Yang, N. (2018). Deep-learning-based earth 
fault detection using continuous wavelet transform and convolutional 
neural network in resonant grounding distribution systems. IEEE Sensors 
Journal, 18(3), 1291–1300.

	20.	 Liang, J., Jing, T., Niu, H., & Wang, J. (2020). Two-terminal fault location 
method of distribution network based on adaptive convolution neural 
network. IEEE Access, 8, 54035–54043.

	21.	 Guo, M., Gao, J., Shao, X., & Chen, D. (2021). Location of single-line-to-
ground fault using 1-D convolutional neural network and waveform con-
catenation in resonant grounding distribution systems. IEEE Transactions 
on Instrumentation and Measurement, 70, 1–9.

	22.	 Sriharan, S., & De Oliveira, S. E. M. (1977). Analysis of synchronous genera-
tor sequential short circuits. Proceedings of the Institution of Electrical 
Engineers, 124(6), 549–553.

	23.	 Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P. T., Mu, T. J., Zhang, S. H., Mar-
tin, R. R., Cheng, M. M., \& Hu, S. M. Attention mechanisms in computer 
vision: A survey. Computational Visual Media 8(3), 331–368.

	24.	 Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2020). Squeeze-and-excitation 
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
42(8), 2011–2023.

	25.	 Lin, M., Chen, Q., & Yan, S. (2014). Network in network. In International 
conference on learning representations, Banff, Canada.

	26.	 Hiskens, I. IEEE PES task force on benchmark systems for stability controls, 
Tech. Rep., November 2013, [Online]. Available: http://​www.​sel.​eesc.​usp.​
br/​ieee/

	27.	 Manitoba Hydro International Ltd. IEEE 39 Bus System, IEEE 39 bus techni-
cal note, May. 2018, [Online]. Available:https://​hvdc.​ca/​knowl​edge-​base/​
read,artic​le/​28/​ieee-​39-​bus-​system/v

	28.	 Farshad, M. (2021). A pilot protection scheme for transmission lines of 
half-bridge MMC-HVDC grids using cosine distance criterion. IEEE Trans-
actions on Power Delivery, 36(2), 1089–1096.

https://doi.org/10.1109/TIE.2021.3069400
https://doi.org/10.1109/TIE.2021.3069400
https://doi.org/10.1109/JSYST.2022.3155881
http://www.sel.eesc.usp.br/ieee/
http://www.sel.eesc.usp.br/ieee/
https://hvdc.ca/knowledge-base/read,article/28/ieee-39-bus-system/v
https://hvdc.ca/knowledge-base/read,article/28/ieee-39-bus-system/v

	Current trajectory image-based protection algorithm for transmission lines connected to MMC-HVDC stations using CA-CNN
	Abstract 
	1 Introduction
	2 Current trajectory image formed by dual differential currents
	2.1 Analysis of differential current waveforms
	2.2 Trajectory of the moving point constructed by differential currents

	3 Current trajectory image-based protection algorithm
	3.1 Convolutional neural network
	3.2 Improvement measures

	4 Performance evaluation
	4.1 Data set
	4.2 CNN training and testing results
	4.3 Comparison of different algorithms
	4.4 Comparison of CDP and Proposed Protection Algorithm
	4.5 Performance assessment under nonideal conditions
	4.6 Active power reversal
	4.7 Performance test based on images constructed by data obtained from RTDS-based experimental system

	5 Conclusion
	Acknowledgements
	References


