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ORIGINAL RESEARCH

Static information, K‑neighbor, 
and self‑attention aggregated scheme: 
a transient stability prediction model 
with enhanced interpretability
Liukai Chen    and Lin Guan*    

Abstract 

Data-driven preventive scanning for transient stability assessment (DTSA) is a faster and more efficient solution than 
time-domain simulation (TDS). However, most current methods cannot balance generalization to different topolo-
gies and interpretability, with simple output. A model that conforms to the physical mechanism and richer label for 
transient stability can increase confidence in DTSA. Thus a static-information, k-neighbor, and self-attention aggre-
gated schema (SKETCH) is proposed in this paper. Taking only static measurements as input, SKETCH gives several 
explanations that are consistent with the physical mechanisms of TSA and provides results for all generator stability 
while predicting system stability. A module based on the self-attention mechanism is designed to solve the locality 
problem of a graph neural network (GNN), achieving subgraph equivalence outside the k-order neighborhood. Test re	
sults on the IEEE 39-bus system and IEEE 300-bus system indicate the superiority of SKETCH and also demonstrate the 
rich sample interpretation results.

Highlights 

•	 A fast TSA scheme for pre-failure scanning.
•	 A physical mechanism-based attention structure for dynamic graph pooling.
•	 A node regression model that responds to key physical mechanisms.
•	 Generator label for richer output information.
•	 Top performance and post-hoc interpretation.
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1  Introduction
1.1 � Background
In recent years, transient stability assessment (TSA) 
models that rely on time-domain simulation (TDS) and 
expert experience have been challenged by the increased 
penetration of renewable energy sources and the 
increased flexibility required for power system operation. 
Although TDS can provide the most detailed dynamic 
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profile of a given transient, it is time-consuming and can-
not provide an analytic mapping from the input to the 
stability results. In other words, the mechanism of tran-
sient stability remains a black-box for engineers.

In this context, data-driven TSA (DTSA) has received 
a lot of attention because of its fast-scanning speed and 
ability to learn generic knowledge from TDS results. 
With both scientific and engineering requirements, it is 
a new proposition how to obtain more human-under-
standable supporting information from the black-box 
and add interpretability to the models.

1.2 � Literature review and motivation
DTSA methods have made rapid progress in recent years, 
and the main target is to improve the interpretability and 
generalization performance of the methods.

Fully explainable models are the first to receive atten-
tion because they can provide a complete analysis pro-
cess. Methods based on the assumption of feature 
independence, such as the general linear model (GLM) 
[1], provide explanations of the coefficients of feature 
effects on the stability results, but their assumptions do 
not explain power system transients with strongly cou-
pled features. Rule-based methods, such as decision trees 
(DT) [2–4], and extreme gradient boosting (XGBoost) 
[5], model the stability margin as a tree-like structure 
with segmented discriminations of thresholds, which can 
clearly show the model decision basis and boundary. A 
causal theory-based feature selection approach [6] com-
bined with DT can give more robust results. However, 
it is difficult for these models to improve performance 
because of strong model assumptions and failure to gen-
eralize to topologies. This means that different models 
are required for different topologies. On the other hand, 
in the process of real system operation, the dimension-
ality caused by the combination of multiple mainte-
nance cases will lead to large numbers of different system 
models.

Models with strong generalization capabilities, rep-
resented by deep learning (DL), have subsequently 
attracted a lot of attention. Such models are generalized 
well enough that a single model can be trained and used 
for tasks with different modes of operation, different fault 
locations, and different topologies. Models with system 
dynamic information as input are developed first, rep-
resented by approaches such as Gated Recurrent Unit 
(GRU) [7], Long-Short-Term Memory (LSTM) [8], or 
reordering trajectories to form pictures [9], and tempo-
ral feature transformation using a Convolution Neural 
Network (CNN) [10], and have achieved success. The 
dynamic information can express the real-time results of 
the system components after they interact with the net-
work, thus improving the generalizability of the model 

to the topology. However, the possibility of obtaining 
the mapping between the static operation mode with 
the steady-state results is hindered by the fact that the 
dynamic features come from the black-box that is the 
time-domain simulation. At the same time, the inter-
pretability of the process of the model is greatly weak-
ened because of the excessive number of parameters and 
overly complex mapping, thus limiting the trust of the 
operators.

With this in mind, researchers have developed two 
types of schemes to improve the interpretability of 
DTSA. The first is the post hoc interpretation meth-
ods that can provide the sensitivity performance of the 
model in the vicinity of the sample, such as differencing 
[11] or Local Interpretable Model-agnostic Explanations 
(LIME) [12]. However, they cannot provide the interpre-
tation within the model. The second is to design models 
that better reflect the physical mechanisms of transient 
stability. Models designed in this way provide a por-
tion of the internal structure with interpretability and 
often with enhanced performance. The Graph Neural 
Network (GNN) is by far the most promising solution. 
Considering the non-Euclidean properties of the power 
system, where buses refer to nodes and lines refer to 
edges, the power system can be represented by a time-
varying graph. A GNN can take into account the topol-
ogy of the power system and thus differentiate the node 
information extraction in different local networks [13, 
14]. However, it is essentially a local aggregation model 
with the problem of the k-neighbor locality. The infor-
mation extraction of a GNN relies on the stacking of lay-
ers, but the number of layers k cannot grow infinitely to 
ensure that it can encompass the entire network. Moreo-
ver, when the number of layers k is too large, it faces the 
problem of feature over-smoothing. To solve this prob-
lem, a method to dynamically extract information from 
outside the node’s neighborhood is needed. So far, there 
is no method to pool the remaining graph signals based 
on the neighborhood characteristics of the nodes.

In this paper, a self-attention mechanism is used to 
address the challenges of interpretability and locality. 
The self-attention mechanism [15], as a new interpret-
able model, has the potential to solve both the locality 
and over smoothing problems. It captures global infor-
mation based on the magnitude of each object’s simi-
larity to other objects as weights, thus giving the model 
the ability to distinguish essential information. In a fault 
diagnosis method [16], self-attentiveness is used to iden-
tify and select the most important features in all nodes. 
For the image description task, self-attention is applied 
to explain the high dependence of a word in the output 
description on a region in the image [17]. On the task of 
speech recognition as text, the work in [18] is well suited 
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to explain the correspondence between sound segments 
at the input and phonemes in the output sequence. The 
model proposed in [19] represents the degree of asso-
ciation of each word in the output sequence with a par-
ticular word in the input sequence, which explains the 
correspondence between French and English words.

1.3 � Contribution of this paper
To combine generalization performance and interpret-
ability, this paper proposes a static-information, k-neigh-
bor, and self-attention aggregated schema, namely, 
SKETCH. This is a model with the interpretability of key 
information aggregation, and can provide more specific 
transient stability information.

The main contributions of this paper are:

•	 Proposing SKETCH, which can provide stability 
predictions for each generator and the system. The 
structural design of the proposed model reflects 
the physical mechanism that the transient stability 
results are determined by a combination of the gen-
erators’ information, the local information of the net-
work, and global information.

•	 Design of a unique self-attention mechanism for 
solving the local information extraction problem of 
GNN such that the interpretability of the model is 
enhanced. The internal weights of this mechanism 
represent the strength of information interactions 
between nodes and thus provide richer information 
about the model internals.

•	 Development of a node regression model to imple-
ment the above structure, responding to two physical 
mechanisms at the internal structure level. Benefiting 
from the design of the nodal regression model, it is 
possible to explain the reasons for the information 
interaction between nodes and provide a post-hoc 
explanation for the model.

The rest of the paper is organized as follows. Section 2 
formally defines the problem and introduces the struc-
ture of the SKETCH model. Section 3 presents the feature 
extraction model, while Sect. 4 presents the downstream 
model. Details of model training and decision-making 
are described in Sect. 5, whereas Sect. 6 develops numer-
ical experiments on the IEEE test systems. Finally, Sect. 7 
concludes the paper.

2 � The data‑driven transient stability assessment 
sketch scheme

To achieve a higher level of interpretability, the con-
cept of sketching from the field of painting is adopted. 
The sketch has both parts of the detail information and 
the frame information in the finished draft, and thus 

can reflect the new requirements for DTSA: more out-
put information and more information about the model 
structure reflecting the physical mechanisms. This paper 
refers to this new problem as DTSA sketch (DTSAS).

2.1 � Task definition
More output information is beneficial to improving the 
trustworthiness of the model. The rotor angle infor-
mation of the generators in TSA can play this key role. 
Therefore, the generator label is introduced as the predic-
tion target.

In this paper, two learning tasks of DTSAS and the cor-
responding labels are designed to improve the robustness 
of the model using multi-task learning.

•	 Task 1 (main task): to learn the system stability label 
ys of the system after fault clearing, which is the pri-
mary target of TSA.

•	 Task 2 (auxiliary task): to learn the stability label yg 
of the generators. When the system is found to be 
at risk of destabilization, the next step is to specify 
emergency control measures for the dominant desta-
bilized generators.

The system and generator labels are calculated based 
on system rotor angle difference �δs and generator rotor 
angle difference �δg , given as:

where the rotor angle δi refers to the cumulative change 
from t0− moment to the end of the simulation, which 
might exceed 360◦ . Note that no absolute value calcula-
tion is used in this definition, and this allows the index to 
distinguish between the steady states of different genera-
tors. The introduction of generator labels can distinguish 
richer information, such as the leading generator in the 
dynamic process. This is helpful in subsequent control. In 
transient stability, different generator rotor angle states 
indicate different system stability mechanisms, which 
cannot at present be reflected by the most commonly 
used system stability 0/1 labels or TSI labels [10] alone.

Figure 1 shows the results of labeling the same dataset 
with different labels. For real power systems, the insta-
bility case is very rare. If a 0/1 index is used to indicate 
whether the system is unstable or not, then serious cat-
egory bias problems occur. With this in mind, continuous 
metrics are used to represent stability. The continuous 
value can reflect the slight stability differences among 
transient stable cases. This avoids the problem of uneven 
distribution of sample categories. Comparing Fig. 1a, b, it 

(1)
�δs = max

i,j
δi − δj

�δgi = max
j

δi − δj
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can be seen that the continuous value labels contain sig-
nificantly more information than the 0/1 labels.

To further discriminate the differences in stability 
between samples, �δg is introduced. The �δg distribu-
tion of the unstable cases in the dataset (red boxed part 
in Fig.  1b) is shown in more detail in Fig.  1c. It can be 
seen that �δg of the individual generators show very clear 
differences, which cannot be obtained by only the system 
label. Further details on how to obtain labels from a rela-
tive perspective are given in Sect. 5.

2.2 � The structure of the SKETCH model
The proposed SKETCH model design is based on two key 
physical mechanisms.

Mechanism I.  The stability of a node (generator) is 
determined by a combination of its own characteristics, 
local network, and external network characteristics.

Mechanism II.  The system rotor angle stability is the 
result of the interaction of all nodes, but it is the genera-
tor node and not the other nodes that ultimately deter-
mine the stability.

The scheme is described formally using the language 
of graph deep learning as follows. The power system 
transient process can be described by a time-varying 
graph Gm = G|t=tm = (Am,Xm) , where A denotes the 
topology of the graph and X  denotes the parameterized 

information of the graph. The system in steady state 
G0− = (A0−,X0−) is perturbed by a perturbation 
D⊖ = {A0+,Ac+} resulting in an actual stable out-
come y=

{

ys, ygi
}

 . The model f  is designed to predict 
this result, given as ŷ=

{

ŷs, ŷgi
}

 . In this paper, the graph 
information is denoted by a matrix X  , whose row index is 
the node number and column index is the feature of the 
node.

In this paper, the symbols are specified uniformly. For 
physical quantities, the subscript is the moment. For vari-
ables in the machine learning process, the subscript is the 
name of the associated module. All the variables are sum-
marized in the NOMENCLATURE.

The proposed scheme is divided into three parts, i.e., 
the feature extraction model, the downstream model, and 
the decision-making process, as shown in Fig. 2.

The feature extraction part is designed with Mecha-
nism I. First, the static feature (G0−,D) is passed through 
the feature enhancement module fD to obtain the distrib-
uted features XD . Second, the local network extraction 
module fL computes the local network features XL for 
each node. Then, the global attention module fG com-
putes the features XD outside the local network. Finally, 
the three features are combined together as the transient 
stable features of the nodes.

The node-level downstream model is designed 
according to Mechanism II. First, the mask module 
eliminates the information of non-generator nodes 

Fig. 1  Comparison of the amount of transient stability information delivered by different types of labels in the same data set. a The 01 label; b The 
TSI label of the system using �δs ; c Replacing �δs with the cumulate angle difference of generators �δg ; d–m The distributions of the respective 
cumulative rotor angle differences for generators numbered 0–9 for all instability cases in the dataset



Page 5 of 16Chen and Guan ﻿Protection and Control of Modern Power Systems             (2023) 8:5 	

and ensures that the information for the subsequent 
process comes only from the generator nodes. Then, 
on the one hand, these features are passed through the 
pooling step and the system stability predictor (SSP) 
to obtain the system stability prediction, while on the 
other hand, the features of each generator node are fed 
independently into the same generator stability predic-
tor (GSP) to get the corresponding generator labels. 
Note that there is only one GSP, i.e., different generator 
features use a consistent identification logic to get their 
respective results.

In the decision-making process, the output of the model 
can be evaluated more precisely based on the correspond-
ence that exists between the generator label and the system 
label. When the generator label agrees with the stability 
indicated by the system label, the predicted value is output, 
otherwise, this sample is uncertain and requires TDS to 
determine its stability.

SKETCH is distinguished from other models by the fol-
lowing two features.

•	 The model establishes an analytic mapping from static 
information to stable results and responds to physi-
cal Mechanisms I and II. The multi-layer perceptron 
(MLP) is not interpretable, because its parsed form has 
no physical meaning.

•	 The node-level feature extraction structure makes the 
information interactions between nodes transpar-
ently visible. This prevents the model from achieving 
its effect by over-fitting the features of non-generator 
nodes, while we do not consider that the model cor-
rectly learns the mechanism of transient stabilization 
in this case. The existing GNN-based work provides 
interpretability of local feature aggregation [13, 14, 
20]. However, since the full graph features are used 
to discriminate the system stability, it is not possible 
to determine whether the key features come from the 
generator nodes.

2.3 � Model application scheme
The application process of the model is divided 
into three stages: offline training → online 
prediction → decision-making.

In the offline training stage, a large amount of TDS 
data are pre-processed to form the dataset on which the 
overall fine-tuning phases of training are performed. The 
fully trained model in the offline phase will be used for 
online stabilization scanning tasks executed periodi-
cally (e.g., every 15 min). In the online prediction stage, 
a stability evaluation is performed based on static and 
disturbance data, and the evaluation results are validated 
by the online decision system to provide higher accuracy 
results, and decide which samples need to be further sim-
ulated accordingly.

Finally, a well-trained model will be used for online 
applications that can provide fast and high-resolution 
evaluation results for the current power system operating 
mode and specified disturbances.

3 � Node‑level global feature extraction model
3.1 � Using static information as input
By solving the DAEs, TDS takes (G0−,D) as input and 
obtains Gt , t > 0 which indicates the stability. However, it 
cannot give any analytic mapping from (G0−,D) to y , so 
it is regarded as a black-box. To avoid the hindrance of 
interpretability by using dynamic information generated 
by TDS, the steady-state information is used as input.

Using static information including fault occurrence and 
clearance information, TDS can represent transient pro-
cesses triggered by a single fault of fixed duration, but for 
DTSAS there are two challenges, i.e., the sparsity of the 
disturbance location information and parameter sensitiv-
ity. The existing scheme performs well in modeling status 
at pre-fault (0−) and after-fault (0+), but is too simplified 
for the representation of fault clearance (c+) results. The 
perturbation at the tc+ moment is simply a change in two 
elements of the admittance matrix.

Fig. 2  The information flow of the proposed method. A denotes the topology of the graph and X  denotes the parameterized information of the 
graph. In the feature extract session, the feature X0− and the topology A0− ,A0+ ,Ac+ are used as input and processed by three modules to finally 
obtain XH . The downstream model takes XH as input and obtains the system label ys and generator label yg by two predictors, respectively
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Here a power flow calculation is used for a distributed 
representation of the perturbation at the tc+ moment. 
This allows a distributed representation of the impact 
of disturbances on electrical quantities while requir-
ing no TDS, making it a better choice. The online meas-
ured power flow X0− is used to represent the state at t0− , 
which contains the load active power P(L) , load reactive 
power Q(L) , generator active power P(G) , generator reac-
tive power Q(G) , bus voltage magnitude V  , bus voltage 
angle θ at each node, as:

where || denotes vector dimension splicing.
Without TDS, the deterministic conditions at t0+ and 

tc+ cannot be obtained, and therefore, the power flow 
state cannot be determined. Thus, a linear estimation of 
the short-circuit currents is used to represent the state 
X0+ at t0+ , and the detailed procedure of the method 
can be found in [20]. However, this method relies on the 
assumption of constant rotor angle at t0+ and cannot be 
used to estimate tc+.

With the admittance matrix Y0− at t0− , the power flow 
equation is given as:

where ∗ denotes conjugate and V̇  denotes V∠θ.
For the tc+ moment, the only disturbance is a fault 

clearing operation, which is essentially a change in the Y  
matrix. From this perspective, a distributed representa-
tion of the variation of Yc + is obtained with the help of (4) 
and V̇0−.

First, a group of powers are fictitiously represented as:

The difference between these powers and the t0− state 
arises entirely from the change in the derivative matrix, 
so P(imp) + jQ(imp) is computed to serve as an enhanced 
feature of tc+ , as:

The representation of disturbance at tc+ is obtained by:

Finally, the three parts of information are combined 
together to obtain the pre-fault information and the 
results after encoding the disturbance information XD , 
which is given as:

(2)
X0− =

{

P
(L)
0−,i||Q

(L)
0−,i||P

(G)
0−,i||Q

(G)
0−,i||V0−,i||θ0−,i

}N

(3)P0+ + jQ0+ = V̇0−Y
∗
0+V̇

∗
0−

(4)P
′

+ jQ
′

= V̇0−Y
∗
c+V̇

∗
0−

(5)P(imp) + jQ(imp) = P
′

+ jQ
′

−
(

P
(L)
0− + jQ

(L)
0−

)

(6)Xc + =
{

P
(imp)
i

∥

∥

∥Q
(imp)
i

}N

The disturbance information is computed by power 
flow and is decentralized to be encoded into the electri-
cal characteristic quantities of the nodes. This coding 
method requires a small amount of storage, and the size 
is only related to the number of system buses rather than 
the number of lines. Another advantage is that this cod-
ing is dense and can provide more effective information 
than one-hot encoding.

3.2 � The local information extraction module
The stability problem of generators after large distur-
bances is closely related to the local topology of the net-
work. A GNN is a proper method for processing graph 
information [21].

A Graph Convolution Network (GCN) [22] is capable 
of aggregating node neighborhood information with a 
fixed weight. Let the input XD =

{

xD,i
}

 . The GCN is rep-
resented as:

where σ(·) is the ReLU function, Ni and d̂i represent the 
neighbors and degree of the ith node, respectively. WC is 
a trainable weight matrix, and the edge weight Aij is the 
element of the adjacency matrix A.

The original GCN is essentially an average aggrega-
tion of neighbors because A is an 0/1 matrix. It considers 
that the admittance of the line plays a decisive and dif-
ferentiated role in the state propagation of the buses, so a 
physically meaningful one is used instead of this average 
aggregation, whose element is:

Besides the information propagation path with fixed 
weights, A Graph Attention Network (GAT) [23] is intro-
duced to allow the model to autonomously construct 
other information propagation strengths:

where aA and WA are learnable weights, and σLeaky(·) 
refers to the LeakyReLU function. To combine a chan-
nel for information aggregation consistent with physical 
mechanisms and a channel for autonomous learning of 

(7)XD = X0−�X0+ �Xc +

(8)fGCN(XD,A) = σ





�

j∈Ni
�

{i}

Aij
�

d̂id̂j

WCxD,j





(9)Aij =
∣

∣yij
∣

∣

/ ∣

∣yii
∣

∣

(10)

fGAT(XD,A) = σ

(

∑

j∈Ni

α
(A)
ij WAxD,j

)

α
(A)
ij =

exp
(

σLeaky
(

aTA
[

WAxi�WAxD,j
]))

∑

j∈Ni
exp

(

σLeaky
(

aTA
[

WAxi�WAxD,j
]))
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models, the outputs of GAT and GCN are added together 
as a layer of GNN transformations fGNN , as:

The cascaded residual GNN structure [14] is used 
to extract information about the k-order neighbors, 
expressed by:

In this paper k = 3 . The information flow of the 
stacked structure is shown in Fig. 3.

The above GNN structure for the t0− topology A0− 
and the tc+ topology Ac+ are developed, respectively. 
Taking XD and (A0−,Ac+) as inputs, the neighborhood 
information extraction module is expressed by:

Note that this is information smoothing on the k
-neighborhood subgraph, where the differences 
between nodes fade away as the depth deepens, and the 
depth is not deep enough for the nodes to get informa-
tion about the full graph.

3.3 � Subgraph equivalence by self‑attention
Generally, TSA is a global problem. What affects 
the stability of the generator is not only its k-neigh-
bor nodes, but also other nodes in the distant area. 

(11)fGNN,k(X ,A) = fGCN,k(X ,A)+ fGAT,k(X ,A)

(12)
f
(k)
GNN(X ,A) = fGNN,k

(

f
(k−1)
GNN (X ,A),A

)

+ f
(k−1)
GNN (X ,A)

(13)
XL = fL(XD,A0−,Ac+)

=
1

2
·
(

f
(k)
GNN(XD,A0−)+ f

(k)
GNN(XD,Ac+)

)

Therefore, although the GNN-based feature extraction 
layer can capture the key information among several 
orders of the node’s neighbors that affect its stability, a 
means of aggregating the information of distant nodes 
is still needed.

A self-attention-based method is thus proposed to 
solve this problem. The core of the self-attention mecha-
nism is to reorganize the global information based on the 
similarity of information among the different nodes. In 
this paper, the similarity measure is replaced with a dis-
similarity measure, so that the self-attention mechanism 
captures not similar information between nodes, but dis-
similar information between nodes.

Let the input X ′

L = XD�XL , the self-attention mecha-
nism first calculates XQ , XK and XV by three different lin-
ear transformations, as:

Then the attention matrix A is calculated by a normal 
function fNorm based on XQ and XK , as:

Finally, the output is obtained by weighting XV accord-
ing to A , as:

The normal function fNorm is a scaling normaliza-
tion function to keep the intensity of the graph signal 
constant before and after the transformation. The 
SoftMax function is the most commonly used fNorm . 
Let the intermediate results XQX

T
K = A

′
= a

′

A and 
A = fNorm

(

A
′
)

= {aA} . Then the SoftMax function 

can be expressed by:

Note that the scaling normalization of the existing 
work is performed through the SoftMax function, which 
essentially encourages nodes to aggregate information 
that is similar to a high degree.

From the point of view of capturing the impact of other 
nodes of the power system on the generator node, the 
dissimilar rather than similar information should be cap-
tured, so the use of the SoftMin function is proposed:

(14)

XQ = WQX
′

L

XK = WKX
′

L

XV = WVX
′

L

(15)A = fNorm

(

XQX
T
K

)

(16)XG = σ(AXV)

(17)aA,i = exp
(

a
′

A,i

)

/

∑

j
exp

(

a
′

A,j

)

(18)aA,i = exp
(

−a
′

A,i

)

/

∑

j
exp

(

−a
′

A,j

)

Layer3

Layer2

Layer1

Residual

Residual

Fig. 3  The information flow of stacked residual GNN layers. As the 
number of GNN layers increases, the information of the local network 
is aggregated at the center of the node
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The role of node-level attention can be explained from 
the perspective of GNN, as:

It can be seen as performing GNN on a weighted and 
directed strongly connected graph, and thus it enables 
the extraction of information outside the k-neighbor-
hood of a node. Therefore, the attention matrix A is 
equivalent to A in (8) and α(A) in (10), and thus serves as 
a global information extraction for other nodes, as shown 
in Fig. 4.

Taking the local network information X ′

L = X
′

D�XL 
as input, the global graph equivalence progress can be 
expressed as:

So far, the input information is sequentially encoded 
by the disturbance representation, the local and global 
encoding of the GNN, and finally becomes a hidden fea-
ture XH , as:

4 � Downstream model
The downstream model implements node-level regres-
sion of stability labels to predict the stability of each 
generator based on its hidden features. This design dis-
tinguishes SKETCH from other DTSA schemes. Based 
on the downstream model, strong interpretability and 
decoupling of the number of model parameters from the 
system size are achieved. The detailed model is shown in 
Fig. 5.

(19)fG

(

X
′

L,A
)

= σ

(

∑

1≤j≤N
AijWVx

′

L,j

)

(20)
XG = fG

(

X
′

L

)

= σ

(

fNorm

(

WQX
′

LX
′T
L WK

)

·WVX
′

L

)

(21)XH = XD�XL �XG

4.1 � Node‑level mask
Physically, the stability results of the system are influenced 
by the characteristics of all nodes, but the final judgment 
of whether the system is stable or not depends only on 
the state quantities of the generator rather than the other 
nodes. In other words, after an effective representation 
learning process, the information of other nodes is noise 
for the stability judgment process, and cannot be used as 
input, and thus needs to be explicitly excluded.

However, all the existing DTSA models based on the 
stability information make use of the hidden features of 
other nodes to some extent. For example, they spread the 
features of all nodes into MLP [14] or downscale the fea-
tures of all nodes before feeding them into MLP [20]. These 
structures make the interpretability of the model limited 
because it is not possible to determine whether the stabil-
ity-determining information comes from the generator or 
non-generator nodes. The former approach also makes the 
number of parameters of the downstream model grow with 
the size of the system.

A masking mechanism is proposed to implement this 
physical mechanism as follows:

where Ng is the number of generators, gi is the index of 
the ith generator, WM ∈ R

dH× d′H is a learnable matrix to 
reduce dimension, and d′H = dH/4.

After masking, the latent feature XH ∈ R
N× d′H is reduced 

to X ′

H ∈ R
Ng× dH

′

 , which only contains the features of the 
generator nodes.

4.2 � Graph pooling
To further make the scale of X ′

H independent of the system 
scale, X ′

H is reduced into a vector x
′

H using a global mean 
pooling operation, as:

(22)X
′

H =
{

WMxTH,gi

∣

∣xH,gi ∈ XH, i = 0, 1, . . . ,Ng

}

(23)x
′

H =
1

Ng

∑

i
x
′

H,i

Fig. 4  The information flow of attention mechanism in GNN 
perspective. Each node extracts differentiated information from other 
nodes in the full graph without scope restrictions, and the strength 
of the extraction depends on the values of the elements in the 
attention matrix

generator  #1
generator  #2

generator  #i

Feature Extract

F''
H

gN d×∈

'
Hx

' '
H, Hix ∈

sŷ

gŷ

H
H

N d×∈

Fig. 5  The structure and feature shape of the downstream model
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4.3 � Stability predictor based on MLP
Finally, two predictors based on full-connected (FC) 
layers, system stability predictor (SSP) and generator 
stability predictor (GSP), are proposed to carry out the 
system stability results and generator stability results, 
respectively. The parameters of the two predictors are 
21-21-16-1.

The input of SSP is XS and output is ys , whereas the 
input of GSP is x′

H,i ∈ X
′

H and output is yg,i . Note that 
the same GSP is used to predict the stability of different 
generators.

5 � Training and decision making
5.1 � Enhance separability of labels
To make full use of the detailed information of the sta-
ble labels, this paper does not directly classify the input 
samples as 0 or 1, but returns the predicted values to 
the vicinity of the labels and then makes a classification 
judgment on stability by a threshold value. For this pur-
pose, the labels proposed in Sect. 2.1 are processed.

First, the original value �δX, X ∈
{

s,gi
}

 is normalized 
to [0, 1] interval by the tanh function, as:

where δth = 180
◦ is the stable threshold of angle, and 

yth = 0.5 is the stable threshold of the labels. Under these 
parameters, the label yX ≤ yth indicates that the system 
is stable.

The advantage of this processing method is that the 
parameters of the labels are independent of the data 
set, and their numerical significances before and after 
processing are order-preserving for different data sets.

5.2 � Loss function
In this paper, the smooth L1 loss function JSL is used to 
fit the labels, and a directional loss function JD is pro-
posed to improve the classification performance near 
the threshold. For each label yX , the loss function J  can 
be expressed as:

The SmoothL1 loss function is:

It considers the advantages of robust regression of L1 
loss for outliers and convergence of MSE loss through a 
segmented loss for the β-error interval, taking β = 0.1 
in the training phase. Considering the L2 loss of the 

(24)yX = tanh

(

tanh−1
(

yth
)

·
�δX

δth

)

(25)J
(

ŷX, yX
)

= JSL
(

ŷX, yX
)

+ JD
(

ŷX, yX
)

(26)

JSL
(

ŷX, yX
)

=

{
(

ŷX − yX
)2
/(2β)

∣

∣ŷX − yX
∣

∣ < β
∣

∣ŷX − yX
∣

∣− β/2 otherwise

model parameters, the total loss function of the model 
is:

where 
∥

∥Wf

∥

∥

2
 denotes the 2-Norm of the parameters of 

the module f  and η=0.0005 is its coefficient.

5.3 � Decision enhancement module
In the decision phase, the stability classification labels are 
calculated based on the continuous values of the model 
output ŷX:

A decision enhancement module (DEM) is proposed to 
enhance the performance based on model output. This 
strategy improves the accuracy of the final decision by 
identifying samples that are difficult to discriminate by 
the model and selecting them to further determine the 
stability using TDS.

The generator stability label is causally related to 
the system stability label, and the cases are labeled as 
uncertain when the predictions conflict with each other. 
These uncertain cases are then sent to TDS to deter-
mine stability. Overall, this strategy trades a small addi-
tional cost of TDS for an increase in decision accuracy. 
For case m, the judgment of DEM ηm can be expressed 
as:

where ⊕ refers to logical operator XOR, ∨ is logical, 
and USm , UGm and COm are logical values to be used in 
classification:

5.4 � Performance metrics
To test the performance of the regression, the mean 
squared error (MSE) is introduced:

where Nm is the case number of the dataset.
Here, accuracy (ACC), recall (REC), and precision 

(PRE) are introduced to evaluate the performance of 
the classification. To measure the combined effect of 

(27)

JTotal = JSL
(

ŷg, yg
)

+ NgJSL
(

ŷs, ys
)

+ η
∑

f

∥

∥Wf

∥

∥

2

2

(28)UX,m ⇔ yX,m ≥ yth

(29)ηm = (USm ⊕ UGm) ∨ COm

(30)

USm = Us,m

UGm =
⋃

i
Ugi ,m

COm ⇔
∣

∣yX − yth
∣

∣ < β

(31)MSEX =
1

Nm

∑

i

∥

∥ŷX − yX
∥

∥

2

2
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the model for the imbalance categories, the kappa index 
(KAP) is also used in the evaluation.

These metrics are calculated based on the confusion 
matrix in Table 1.

6 � Results and discussion
In this section, SKETCH is demonstrated and compared 
to other node-level methods in the IEEE 39-bus system 
and IEEE 300-bus system.

6.1 � Dataset generation and parameter setting
The datasets are generated by TDS on PSD-BPA, where 
all generators use the 6th-order model with the excitation 
system of IEEE model type I. Following the principle of 
not creating islands, different topologies are obtained by 
cutting 0/1/2 lines respectively. The global load and gen-
erator levels start at 75% and grow to 120% in 5% steps, 
and these increments are randomly assigned to all gen-
erators and loads. The disturbance is a three-phase short-
circuit fault, occurring at the first section or end of the 
line, with a duration of 0.1 s before the protection oper-
ates and isolates the faulty line. The dataset contains 
86,756 cases, of which 19,040 are unstable and 67,595 are 
stable, and are randomly divided into training set, valida-
tion set, and test set according to 6:2:2 ratios. Note that 
the developed model does not preset the knowledge of 
the dynamic properties of the system components, while 
this knowledge is extracted from the data and solidified 

(32)ACC =
TP+ TN

TP+ TN+ FP+ FN

(33)REC = 1−
FN

TP+ FN

(34)PRE = 1−
FP

TP+ FP

(35)

KAP =
ACC− pe

1− pe

pe =
(TP+ FP)(TP+ FN)− (TN+ FP)(TN+ FN)

(TP+ TN+ FP+ FN)2

in the structure and parameters of the model through a 
training process. If the dataset reflects a system contain-
ing power electronic components, then a stability dis-
criminative model adapted to these components can be 
trained with these data.

Between the different schemes compared below, a lin-
ear layer without nonlinear transformation capability will 
be added for dimensional transformation when there is 
a difference between the input and model dimensions, 
if not specifically stated. This approach minimizes the 
variation in the number of model parameters caused by 
differences in the dimensions of a particular layer, thus 
enhancing the comparability of the results.

All models are optimized by an Adam optimizer 
with batch size 256. The learning rate starts from 0.002 
and decays by 10% every 10 batches, for a total of 100 
epochs of training. If not differently specified, the pro-
posed strategy is leveraged to train all the models and the 
DEM module is disabled in the proposed scheme in the 
remaining subsections.

The program is implemented using the PyTorch [24] 
and PyTorch-Geometric frameworks [25], and the com-
puting platform is Intel i7-9700 CPU and Nvidia GTX 
1660Ti.

6.2 � The hyper‑parameter setting of the GNN structure
After disturbance representation, the transient features of 
the system are fed to the GNN module for feature extrac-
tion from the local network. The values of the relevant 
hyper-parameters are compared in this section, including 
the number of layers of GNNs and the connection pat-
terns of different GNNs at each layer.

Table 1  Confusion matrix

Actually unstable Actually 
stable

Predicted unstable TP FN

Predicted stable FP TN

Fig. 6  Comparison on different GNN structures. a, b Show the 
variation of model performance with the number of GNN layers, 
while c, d show the effect of different structure within each GNN layer
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The results of the comparison of different layers accord-
ing to the connection of (12) are presented in Fig. 6a, b. 
As k grows from 0 to 3, the metrics obtain a substantial 
improvement, and the optimal value is achieved at k = 3 , 
indicating that a certain amount of local information per-
ception helps to improve the model performance. How-
ever, when k continues to grow, the metrics no longer 
show significant growth. Therefore, k = 3 is used.

Then, several other ways of connecting GNNs within 
layers are compared around (11), using only GAT, GCN, 
and splicing using both, respectively. As shown in Fig. 6c, 
d, the connection proposed in (11) is the best form.

6.3 � Verification of disturbance representation
To demonstrate the efficiency of the proposed distur-
bance representation method, the real and estimated val-
ues are mixed to form the following sets of input value 
schemes. Each input scheme consists of three letters 
representing the source of information at t0−, t0+, tc+ . R 
denotes the actual value, E denotes the estimated value, 
and a short bar − denotes that this is not used. Detailed 
scenario information is shown in Table 2.

The results are shown in Fig.  7. As seen, overall, the 
performance metrics are almost always better for the 
solutions with more temporal information entered. Com-
pared with R - - , the kappa of RR - and RRR increase by 
7.12% and 9.61%, respectively. When the inputs are esti-
mates ( R - - , RE - , REE ), kappa improves by 7.32% and 
8.71% in that order. A similar conclusion also holds for 
other performance metrics.

It is noted that when the real value is not used ( RE - and 
REE ), the results close to those obtained using TDS ( RR - 
and RRR ) for the features are also obtained using the esti-
mates proposed in this paper. This reflects the potential 
of this estimation method for the application of fast pre-
fault scanning.

6.4 � Overall performance of SKETCH on the test set
This section shows the statistics of the output on the IEEE 
39-bus test set. Figure 8a shows the prediction of the sys-
tem label ys . The orange bars represent the distribution 
of the test set, while the box plots and blue data points at 

the corresponding locations represent the performance 
of the model for this subset. In the subset with more data 
(0.2–0.4), the regression error is relatively small, while in 
the subsets near yth or with fewer cases, the error is rela-
tively large, indicating the lack of data.

To demonstrate how well the model learns the overall 
distribution, Fig. 8b shows the means and quartiles of the 
sketch on the test set, and Fig. 8c represents the error dis-
tribution for each label. Overall, the model achieves the 
regression of ys and ygi with a relatively low and consist-
ent error level.

6.5 � Explanation of the internal mechanism
From the perspective of information flow, the mecha-
nism of the model can be further analyzed. In the 
above experiments, the SKETCH model exhibits 

Table 2  Scenario details and KAP on task 1

Scenario Input information XD KAP (%)

R– X0− 86.22

RE- X0− , X0+ 93.54

RR- X0− , actual value at t0+ 93.34

REE X0− , X0+,Xc− 94.93

RRE X0− , actual value at t0+,Xc− 94.50

RRR​ X0− , actual value at t0+,tc+ 95.83

Fig. 7  Model performance with different input information

Fig. 8  Statistic results of SKETCH output on the IEEE 39-bus test set. 
Here are the statistics of the system labels (a), the sketch (b) and the 
error of labels (c), respectively
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superior performance in task 2. This implies that the 
model extracts the key information that determines tran-
sient stability.

Since each generator shares the same evaluator GSP, 
it means that the nodes’ differentiated information can 
only come from the feature extraction model: self-fea-
tures, neighborhood information, and global attention 
information.

The transient stability problem is a global problem, and 
the perceptual field of the three GNN layers in the model 
cannot cover the whole network, implying that the infor-
mation outside the k-order neighborhood of the genera-
tor can only be obtained by the attention module.

The weights of the attention matrix represent the 
intensity of information importance. The ith row and jth 
column of the matrix represent the importance of node 
j to node i.

The information capture of the model is explored for 
different cases by visualizing the attention matrix.

Both a stable and an unstable case are shown in Fig. 9. 
In case-1, line #17–#27 is disconnected for maintenance 
and the system is operating at 75% load level with bus 
#16 being the central node of the system. At t0 = 0 s , a 
short circuit occurs on line #23–#24 near bus #24, last-
ing for 0.1  s before the protection operates and the line 
is disconnected. During 4  s, the system remains stable 
with a maximum angle difference of 99.3 degrees, which 
occurs between generator #0 (bus #30) and generator #6 
(bus #36), as shown in Fig. 9b. The actual output sketch 
of the model is shown in Fig. 9c, which indicates that the 
model predicts the actual sketch of the system with a very 
small error. The attention matrix of the case is shown in 

Fig. 9d, buses #16, #24, #38, and #39 are given prominent 
weights.

In Fig. 9a, e–g, case-2 shows an unstable case. In this 
case, lines #5–#6 and #8–#9 are disconnected for main-
tenance and the system is operating at 105% load level 
with bus #8 being a new central node of the system. At 
t0 = 0 s , a short circuit occurs on line #26–#29 near bus 
#29. The system is then destabilized with a maximum 
angle difference of 8033.7 degrees, which occurs between 
generator #0 (bus #30) and generator #8 (bus #38), as 
shown in Fig.  9e. Figure  9f demonstrates that the pre-
dicted results are very close to the actual values. In the 
attention matrix of this example, buses #8, #29, and #38 
receive larger weights.

Physically, the fault bus, the generators with the largest 
angle difference, and the topologically significant bus are 
three key factors in system stability. In case-1 and case-
2, the attention module shows greater attention weights 
to the above three factors, suggesting that SKETCH may 
have learned this mechanism. Note that the first two are 
different for each sample and the model can distinguish 
them effectively, indicating that this part of the model is 
knowledge that can be generalized.

The attention between nodes is not the same in each 
sample. However, for similar topologies, effective models 
always give consistently high attention to topologically 
important nodes. The attention entropy and the mean 
value of attention are used on the test set to measure the 
consistency of this conclusion and examine whether the 
model can identify important nodes.

The entropy of the node i is calculated by:

Fig. 9  Explanations of two cases. a Is the topology of the system, where the lines and markings with specific colors (case-1 in blue and case-2 in 
red) indicate the difference on the original system. b–d are the rotor angle curve, output labels and attention weights of case-1, respectively, while 
e–g are those of case-2
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It can be seen that uniform attention has the highest 
entropy emax = log (N ) ≈ 3.66 . Low entropy indicates 
high attentional focus. Ideally, the attention matrix of the 
model should be a distribution with low entropy, i.e., a 
few nodes are much more important than others.

The results are shown in Fig. 10a, b. The average atten-
tion score of buses #4, #16 and #29 are high across sam-
ples and the attention entropy of all nodes is well below 
the maximum value.

To verify the effectiveness of the proposed SoftMin-
based attention module for global information extrac-
tion, the results of using SoftMax are analyzed, as shown 
in Fig. 10c, d. Although the SoftMax results have similar 
low entropy in Fig. 10d, it can be seen from the visualized 
Fig. 10c that the reason for low entropy is that each node 
unnecessarily pays great attention to its own features, 
which hinders the extraction of information from other 
nodes. The impact of the SoftMax function on the per-
formance is analyzed in Table 3.

(36)ei = −
∑

j
αij log

(

αij
)

6.6 � Ablation experiments
The technical details mentioned above are all ablated and 
tested separately to verify their effectiveness. Specifically, 
when ablating a module, a linear alignment of the fea-
tures is performed to align with the dimensionality of the 
other parts. The results are also shown in Table 3.

The performance of the model after the ablation of 
all three modules is degraded to different degrees. This 
reflects the fact that these modules are essential to the 
overall performance. Among them, removing disturbance 
encode gives the largest decrease in precision (about 
15%), indicating that the node instability information 
mainly comes from the disturbed situation. In contrast, 
removing GNN gives the largest boost to the other met-
rics, reflecting the importance of considering topological 
information in the TSA problem. Removing the attention 
module reveals that performance degradation still occurs 
and it verifies that information outside the kth-neighbor-
hood is equally indispensable.

6.7 � Comprehensive performance
Several baseline models are employed for comparison 
with the SKETCH model on task 1. A DNN is added to 
the comparison as representative of models that perform 
well but do not have topology adaptation capabilities. 
The existing best models, ResGAT [14] and PE-MAGCN 
[20], have also been added for comparison. Meanwhile, 
it focuses on solutions that use dynamic information as 

Fig. 10  Consistency of case-level explanations. a, b are results of the 
proposed SoftMin-based attention module, while c, d are results of 
the SoftMax-based attention module

Table 3  Performance on task 1 in ablation experiments

1 Replace (7) with XD = WX0−XD = WX0−

2 Replace (13) with XL = WXDXL = WXD

3 Replace (16) with XG = WX
′

LXG = WX
′

L
4 Replace (18) with (17)

Part ACC​ PRE REC KAP

Original 98.50 98.98 99.18 94.93

Input1 92.84 84.67 82.53 80.71

GNN2 88.59 90.43 70.07 71.80

Attention3 95.79 93.15 89.95 85.63

SoftMin4 95.14 94.75 95.79 86.61

Table 4  Model performance on the IEEE 39-bus system

1 The scale of the DNN is {546-273-117-39-10-2}

Model ACC​ PRE REC KAP

SKETCH 98.50 98.98 99.18 94.93

DNN1 96.63 97.81 97.18 88.89

ResGAT​ 97.96 99.00 98.52 93.04

PE-MAGCN 99.28 99.37 98.86 96.23

RGCN 96.99 97.15 96.23 90.11

Fig. 11  Further enhancement by DEM on the IEEE 39-bus system
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input and therefore introduce the best performing model 
RGCN [13] for comparison. The results are shown in 
Table 4.

6.8 � Decision enhancement strategy
In the decision-making phase, DEM is activated to 
improve the accuracy of the model by using the consist-
ency of the model on the output of task 1 and task 2 to 
filter the uncertain samples.

As shown in Fig.  11a, after activating DEM, the per-
formance of the model on both tasks is improved to dif-
ferent degrees. Among them, the accuracy of task 1 is 
improved from 98.50% to 99.51%, and the effectiveness 
of the model is further improved. After activating DEM, 
6.49% of the samples are subjected to additional time-
domain simulations to determine their stability.

Model robustness under larger topological disturbance 
on account of extreme weather conditions is considered 
in Fig. 11b. In extreme weather, the system is more likely 
to suffer from larger topology changes and power distri-
bution variations, and such extreme cases are used to fur-
ther test the stability of the model. Overall, 7000 samples 
are generated from the N-3 topology with 20% random 
variation in power distribution and SKETCH is tested 
directly without retraining. As shown in Fig. 11, SKETCH 
illustrates strong adaptability to unknown topologies. In 
such extreme cases, SKETCH identifies confusing cases, 
which account for 13.59% of the total samples, and main-
tains 95.94% accuracy over the remaining cases.

6.9 � Test results in a larger system
A larger and more complex IEEE 300-bus system is 
employed to validate the effectiveness and scalability of 
SKETCH. The system, with 300 buses, 69 generators, 203 
loads, and 411 transmission lines, is comparable in size to 
the China Southern Grid (500 kV). Overall, 52,210 sam-
ples are generated, of which 46,516 are stable and 5,694 
are unstable. A retrained model is required, and its opti-
mal settings are listed in Table 5.

The statistical results of the SKETCH output are 
shown in Fig. 12. Consistent with the results on the IEEE 

39-bus test set, the model achieves an overall prediction 
error of less than 5%, which is in good agreement with 
the real data distribution. The model performs very well 
in the data-rich subset, and the error increases in the 
data-sparse part. A sampling of important data and aug-
mentation of the dataset are still issues that need further 
consideration.

Note that without changing the number of model 
parameters, the model still shows high performance on 
a much larger system. Tests show that the model main-
tains its performance in small systems with little degra-
dation, indicating the potential of the model to be applied 
to large systems.

7 � Conclusion
This paper presents the DTSAS problem and a corre-
sponding solution, namely, SKETCH, to confirm the 
physical mechanism for critical model interpretation and 
to enrich output information.

The developed scheme uses only static measurement 
as input and proposes a representation of features at the 
moment of fault clearance. This is proven to obtain effec-
tive enhancement. A module based on the self-attention 
mechanism is designed to solve the locality problem of 
the GNN, achieving subgraph equivalence outside the 
k-order neighborhood. At the same time, the interpret-
ability of the model is enhanced because the model is 

Table 5  Model performance on the IEEE 300-bus system

1 To match the input and output dimensions, the scale of the DNN is modified to 
{4200-2100-900-300-69-1}

Model ACC​ PRE REC KAP

SKETCH 98.48 98.73 99.43 94.65

DNN 1 92.18 92.29 71.69 75.37

ResGAT​ 95.94 97.40 97.81 86.66

PE-MAGCN 98.88 99.14 99.53 96.32

RGCN 96.63 97.81 98.20 88.89

Fig. 12  Statistic results of SKETCH output on the IEEE 300-bus test 
set. Here are the statistics of the system labels (a), the sketch (b) and 
the error of labels (c), respectively
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structurally designed to conform to the physical mecha-
nism of transient stability.

Test results on the IEEE 39-bus system and IEEE 300-
bus system show that SKETCH exhibits better perfor-
mance than other models and that the performance 
improvement can be drilled down to black-box models 
for qualitative interpretation.

Future work will concentrate on exploring the potential 
of this node-number-independent mechanism to investi-
gate models that can account for variations in the num-
ber of nodes in the system.
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