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Abstract 

This paper offers a systematic literature review of real‑time detection and classification of Power Quality Disturbances 
(PQDs). A particular focus is given to voltage sags and notches, as voltage sags cause huge economic losses while 
research on voltage notches is still very incipient. A systematic method based on scientometrics, text similarity and 
the analytic hierarchy process is proposed to structure the review and select the most relevant literature. A biblio‑
metric analysis is then performed on the bibliographic data of the literature to identify relevant statistics such as the 
evolution of publications over time, top publishing countries, and the distribution by relevant topics. A set of articles 
is subsequently selected to be critically analyzed. The critical review is structured in steps for real‑time detection and 
classification of PQDs, namely, input data preparation, preprocessing, transformation, feature extraction, feature selec‑
tion, detection, classification, and characterization. Aspects associated with the type of disturbance(s) addressed in 
the literature are also explored throughout the review, including the perspectives of those studies aimed at multiple 
PQDs, or specifically focused on voltage sags or voltage notches. The real‑time performance of the reviewed tools is 
also examined. Finally, unsolved issues are discussed, and prospects are highlighted.

Keywords Bibliometric analysis, Classification, Detection, Power quality (PQ), Real‑time, Systematic review, Voltage 
sag, Voltage notch

1 Introduction
Power Quality (PQ) is defined as the set of characteris-
tics of electricity at a given point in an electrical system 
[1], and these characteristics are evaluated against a set 
of agreed reference parameters. Thus, PQ Disturbances 
(PQDs) are deviations in these characteristics from the 
reference parameters, deviations which can be percep-
tible to the users of the electrical power grid (producers 
and consumers) [2]. Therefore, PQDs are classified and 
studied as the combination of voltage quality and cur-
rent quality [2]. The impact of PQDs will depend on the 

severity of these deviations interfering with the expected 
operation of the electrical systems. Noticeable PQDs will 
directly affect the interaction between consumers and 
producers of electricity, leading to energy inefficiency, 
limited generation/consumption of electricity, malfunc-
tion and damage of sensitive equipment, maloperation of 
control-based industrial processes, etc. [3].

The detection and classification of PQDs are among 
the main components of PQ monitoring systems in the 
smart grid paradigm [3, 4]. The detection process helps 
to indicate the time and location of deviations in volt-
age and current, whereas the classification process con-
tributes to the identification of disturbances and sources 
of disturbance, and the selection of adequate mitigation 
techniques to overcome current and/or future equipment 
malfunction. The real-time approach of PQ monitoring 
systems (synchronized, continuous, single, or multi-point 
measurements) can help in the understanding of PQD 
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propagation in the power grid and allow accurate and 
faster decisions regarding the mitigation of PQ issues.

Some PQDs are more likely to appear and cause equip-
ment malfunctioning than others. Voltage sag, also 
referred to as voltage dip, is the decrease of the RMS 
voltage between 0.1 and 0.9 pu lasting from 0.5 cycle to 
1 min [5, 6]. Voltage sags are mainly caused by faults in 
the power system, transformer energizing, motor start-
ing, and switching of heavy loads [5, 6]. The frequency 
of occurrence of voltage sags is between a few tens and 
one thousand events per year, with typical durations of 
less than 1 s, and voltage drops above 40% [6]. It is widely 
known as one of the PQDs that produce the highest eco-
nomic losses in industrial, commercial, and microgrids/
isolated networks [4, 7–11]. Other widely studied PQDs 
are swells, interruptions, imbalance, flicker, and harmon-
ics [4, 9, 11], disturbances for which specialized algo-
rithms have been proposed in the literature. In contrast, 
there are PQDs that have not yet been widely explored, 
especially in the scenario of high penetration of renew-
able energy resources and their interfacing power elec-
tronics circuits.

Voltage notches are steady-state sub-cycle waveform 
distortions produced by power electronic converters 
when current is commutated from one phase to another 
leading to short-duration overcurrent [5, 9, 12, 13]. A 
voltage notch is characterized by its depth, i.e., the aver-
age distance of the line voltage to the ideal sine wave 
during notch; width, i.e., the notch duration with values 
of less than half cycle; and area, i.e., the product of the 
notch depth times the notch width [12]. There is still a 
lack of comprehensive assessment and accurate tech-
niques for real-time detection, classification, characteri-
zation, and aggregation of cycle-based voltage notches 
when considering the operation of power grids. Thus, 
notches have been mainly assessed with non-specific, 
multi-disturbance detection and classification techniques 
(“multiple PQDs” techniques).

The detection and classification of PQDs in both offline 
and real-time applications have been addressed from dif-
ferent perspectives. Several methods for the classifica-
tion of three-phase unbalanced voltage sags due to faults 
are described in [14]. Signal processing and Artificial 
Intelligence (AI) techniques for classification of several 
PQ events are reviewed in [13], where Fourier Trans-
form (FT), Short-Time FT (STFT), and Wavelet Trans-
form (WT) are considered as the main signal processing 
techniques, and expert systems, fuzzy systems, Artifi-
cial Neural Networks (ANNs), and Genetic Algorithms 
(GA) as the main AI techniques. In [13], the authors also 
propose an initial structure for the detection and classi-
fication of PQDs, including feature extraction and clas-
sification (decision making). Some of the techniques 

used for signal analysis are described in [15]: FT, STFT, 
WT, Gabor Transform (GT), Stockwell Transform (ST), 
Kalman Filter (KF), etc., as well as some automatic clas-
sification techniques such as ANNs, fuzzy logic, Support 
Vector Machines (SVM), and Bayesian classifiers. The 
detection and analysis of voltage events are reviewed in 
[9], which focuses on offline and real-time techniques 
using a combination of WT and ANNs, SVM, and Fuzzy 
Expert Systems (FES). Reference [16] introduces the cat-
egory of optimization techniques for the classification of 
PQ events and also presents a comparative chart taking 
into account input data (synthetic/practical) and input 
noise. In [17], WT is compared with other techniques 
for the detection of transient disturbances in voltage sup-
ply systems. Methods for the identification of voltage sag 
sources are explored in [18], which classifies them into 
single and multi-monitor (multi-point) based measure-
ments. This first set of works (2003–2013) are focused on 
PQD detection and classification techniques, and most 
do not include pre-or post-processing techniques.

Comprehensive reviews on signal processing, AI, and 
optimization techniques applied in the detection and 
classification of PQDs are developed in [19, 20]. These 
reviews present two complementary structured meth-
odologies for PQD detection and classification, i.e., input 
data space, feature extraction, feature selection, classifi-
cation, and decision space [19], and pre-processing and 
post-processing stages [20]. A holistic taxonomy for sig-
nal processing, AI, and optimization techniques are also 
presented, highlighting the need for more methods in 
the detection and classification of real-time, noisy, three-
phase, single and multiple PQDs.

The RMS method, WT, ST, ANNs, SVM, and some 
indices for voltage sag disturbance recognition are 
reviewed in [21]. In [4], WT and SVM are reviewed and 
applied for the detection and classification of sags, swells, 
and harmonics, including a table that relates PQDs and 
corresponding standards. In [22], a review of PQDs 
measurement and analysis on shipboard power systems 
is presented, which mainly refers to voltage and fre-
quency fluctuations, fault detection and classification, 
voltage sags and swells, transients and voltage notching, 
harmonic distortion, and voltage imbalance. In addition 
to signal processing techniques, reference [10] classifies 
fuzzy logic, ANNs, SVM, particle swarm optimization, 
and GA as soft-computing techniques for feature extrac-
tion and classification of PQDs.

A comprehensive review and comparison of PQD 
detection and classification are presented in [23], which 
describes the advantages and disadvantages of different 
techniques. Signal processing techniques are classified 
into eight categories: FT, WT, ST, GT, KF, Hilbert-Huang 
Transform (HHT), Mathematical Morphology (MM), 
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and others including Variational Mode Decomposition 
(VMD). For the classification of PQDs, seven categories 
are presented: ANNs, SVM, FES, neuro-fuzzy system, 
Extreme Learning Machine (ELM), deep learning, and 
miscellaneous pattern recognition techniques. In [24], a 
taxonomy is proposed for digital signal processing tech-
niques, one which presents the categories of non-para-
metric and parametric techniques including in the latter 
KF, rotational invariance techniques, multiple signal clas-
sification, and autoregressive-moving-average, etc. These 
works contribute to widening the state-of-the-art tech-
niques used for the detection and classification of PQDs, 
while outlining the advantages and disadvantages for the 
techniques. However, search rules used in the literature 
reviews are not presented.

Reference [25] presents a detailed assessment of the 
theory and application of ST for the detection and clas-
sification of PQDs. A mitigation stage is proposed in [3], 
where the input data is from the stages of detection and 
classification of PQDs in the context of renewable energy 
resources.

Real-time techniques are explicitly addressed for the 
detection and classification of PQDs in [11], which pre-
sents the search rules, the evolution of PQDs publica-
tions, the internal structure of a typical embedded system 
for PQD classification, and other comparative analyses. 
Moreover, the need for testing the detection and classifi-
cation algorithms with no synthetic (measured) PQDs is 
highlighted in [26], and it concludes that such an aspect 
will be crucial for applications in smart grids. In this 
same approach, references [27] and [28] present a review 
of the potential applications of deep learning in smart 
grids, where the structured scheme of consecutive steps 
for detection and classification of PQDs is blurred into a 
compact, general, black-box approach. Finally, in [29], the 
main advantages and disadvantages of several techniques 
for the detection and classification of PQDs are summa-
rized, including an accuracy assessment of the methods 
proposed in different publications.

Based on the above synthesis, there is extensive litera-
ture on detection and classification of PQDs but some 
relevant topics still require further research and analy-
sis from different perspectives, e.g., algorithms for real-
time applications, the need of applications in the field, 
etc. Other topics have been marginally explored such as 
characterization and classification of voltage notches. In 
this context, the proper selection of relevant literature to 
analyze the current state of the art is challenging. There-
fore, this paper proposes a systematic and reproducible 
approach to identify relevant literature in both exten-
sively and marginally explored topics. Moreover, the 
extensive literature is worth studying from the quantita-
tive perspective with a bibliometric analysis to identify 

research trends. The bibliometric-based methodology 
proposed in this paper is then applied to carry out a sys-
tematic literature review of the real-time detection and 
classification of PQDs. The main contributions of this 
paper are:

• The proposal and application of a novel methodology 
for reproducible and systematic literature reviews.

• The application of a bibliometric analysis to the 
metadata retrieved from bibliographic databases.

• The description of techniques for real-time detec-
tion and classification of PQDs.

• The categorization of techniques used in the stages 
of PQD detection and classification, and their cor-
responding advantages and disadvantages in the 
context of electrical engineering.

• The identification and emphasis on marginally 
explored PQDs (voltage notches).

Figure  1 illustrates the structure and logical frame-
work of the paper. In line with Fig. 1, the remainder of the 
paper is structured as follows. Section 2 shows the con-
cepts and theoretical background for the understanding 
of PQDs and their classification, while Sect.  3 presents 
the stages of the systematic methodology for the litera-
ture review. Sections  4 and 5 develop quantitative and 
qualitative analyses of the literature in the bibliometric 
analysis and the literature review, respectively. Section 5 
describes and analyzes the stages for PQD detection and 
classification. The discussion of the main findings related 
to the literature review is summarized in Sect.  6, and 

Motivation and contributions1. Introduction

Concepts and theorethical
background

2. Background on Power 
Quality Disturbances (PQDs)

Formulation of the systematic 
review

3. Methodology for the 
literature review

Quantitative analysis of the 
literature

4. Bibliometric analysis
Descriptive and qualitative 

analysis of the literature

5. Literature review

Analysis of technical results, 
research gaps, and findings6. Discussion

Definition of derived 
research lines

7. Perspectives for future 
research

Summary of methodology and 
findings, and final remarks8. Conclusion

Fig. 1 Structure and logical framework of the paper
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Sect.  7 proposes some perspectives for future research. 
Finally, Sect. 8 presents the conclusions.

2  Background on power quality disturbances 
(PQDs)

The characteristics of electricity at a given point on an 
electrical system, compared to a set of reference tech-
nical parameters are widely known as PQ [1]. The ref-
erence (ideal) signals in three-phase systems are three 
pure sinusoid waveforms with constant phase angles and 
amplitudes, and a 120° phase shift between them. A PQD 
therefore refers to any deviations from the reference volt-
ages and currents. In this context, PQ is assessed as the 
combination of voltage quality and current quality [2].

Table  1 summarizes the features of typical PQDs in 
the power grid. The types of PQDs are grouped into 
variations (continuous deviations) and events (finite 
deviations).

Variations are usually produced in a typical operation 
of a power system, while events are generally unpre-
dictable phenomena. Given the dynamic nature of the 
power system (power frequency changes, slow volt-
age changes, imbalance), the main sources of common 
variations (waveform distortion, notches, fluctuations) 
are the power electronics interfaces, e.g., for renew-
able energy sources, energy-saving equipment, electric 
vehicle chargers, and mains communication systems. 
Switching maneuvers, faults, and lightning strikes are 

typical sources of events. By using these two categories, 
the taxonomy of typical PQDs (continuous and finite 
deviations) can be structured for detection, processing, 
classification, and further processing.

According to Table  1, voltage notches are classified 
as variations (continuous deviations), while other dis-
turbances in this category are power frequency varia-
tions which refer to deviations of the power system 
fundamental frequency from the nominal value (50 Hz 
or 60 Hz). Also, among variations, slow voltage changes 
refer to the increase (overvoltage) or decrease (under-
voltage) of about 20% of the rated RMS voltage last-
ing more than 1  min. Waveform distortions including 
harmonics, interharmonics, and supraharmonics, are 
periodic deviations from the ideal power frequency 
sine wave, characterized by the spectral content of the 
deviation. Fluctuations are systematic changes of the 
voltage envelope and can be perceived as flicker. In 
addition, imbalance refers to differences between volt-
age and current magnitudes of phases in a three-phase 
system, and/or a deviation from the ideal 120° phase 
shift between phases [5].

Voltage sags are events (finite deviations) according 
to Table 1. Other events include swells, which refer to 
the increase of the RMS voltage above 1.1 pu lasting 
from half cycle to 1  min. Interruptions are character-
ized by the complete loss of voltage, i.e., less than 0.1 
pu. Finally, transients are sudden changes in voltage or 
current that occur over a short period of time [5].

Table 1 Classification of typical PQDs

Type ofdisturbance Deviation Evaluation Main cause

Variations (continuous deviations) Frequency – Imbalance in generation and 
demand

Slow voltage changes Voltage magnitude Variation in demand and genera‑
tion

Waveform distortion Frequency domain DC Offset Electrical machines (transformers, 
generators, motors), power elec‑
tronic converters, narrowband PLC

Harmonics

Interharmonics

Supraharmonics

Notches Time domain Momentary amplitude deviation

Fluctuation Flicker Welding machines, multi‑cycle 
control

Imbalance Symmetrical components Unbalanced (single‑/two‑phase) 
loads or generators

Events (finite deviations) Rapid voltage changes Voltage magnitude Connection of heavy loads, fault 
clearance, climatic hazardsSags

Swells

Interruptions

Transients Switching operations, lightning 
strikes
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3  Methodology for the literature review
The general schema to conduct the literature review is 
based on the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [30]. According 
to Fig. 2, the process is performed through four stages, 
namely, identification, screening, eligibility, and deci-
sion. Details on the stages are given in the following 
subsections.

3.1  Identification and screening
In the identification stage, an advanced search rule is 
formulated in the Scopus database to obtain biblio-
graphic metadata of publications related to the detec-
tion and classification of PQDs. The search rule is 
shown in Fig.  3 and is formed by logical operators 

and sets of terms to be searched only in titles or titles, 
abstracts, and keywords. Set 1 has general terms such 
as detection and classification, while terms with a 
broader meaning are listed in Set 2. To avoid mislead-
ing results with these broader terms, the constraints 
including terms of Set 1 in title, abstract, or keywords 
are merged in Gate A. Set 3 contains terms related to 
PQ with a focus on sags and notches, while Set 4 also 
refers to PQ with more vague terms. Thus, to avoid 
misleading results, the constraints including terms 
of Set 5 are merged in Gate C. The search merged in 
Gate E must include terms of general topics (B) and PQ 
(D). Finally, the terms of Set 6 are merged in Gate F to 
include more publications related to voltage notches 
because the results in this topic are very limited.

The search rule was applied on March 2nd, 2022, and 
limited to publications up to 2021. The search yielded 
4068 records. Then, in the screening stage, duplicates 
were removed. The resulting 4059 records, includ-
ing 2140 conference papers (53%), 1841 journal articles 
(45%), 61 reviews (2%), and 17 other types of publica-
tions, e.g., books, book chapters, etc. (< 1%), are studied 
quantitatively in the bibliometric analysis of Sect. 4.

3.2  Eligibility and decision
The eligibility and decision stages present the selec-
tion procedure to identify a reduced set of relevant and 
diverse research papers to be analyzed qualitatively in the 
critical review. Only journal and conference papers are 
considered because they summarize very well the state of 
research. The selection procedure is carried out in four 
steps as follows.

1. Categorization Two dimensions are defined to clas-
sify papers, namely, period according to date of pub-
lication (i.e., ≤ 2005, 2006–2010, 2011–2015, and 
2016–2021) and type of PQD (i.e., multiple PQDs, 
voltage sag, and voltage notch). All papers are clas-
sified according to both dimensions to obtain a final 
selection of papers distributed in time and type of 
disturbance. The classification in period is straight-
forward, and the classification according to the type 
of disturbance is made by searching the terms sag (or 
dip) and notch in titles. Papers not classified as sag or 
notch are included in the category of multiple PQDs. 
The resulting distributions of papers in both dimen-
sions are shown in the light-blue rectangles in Fig. 4.

2. Scoring equation An equation is formulated to meas-
ure the relevance of papers from different perspec-
tives, with five proposed indices. The title similarity 
index is calculated as the ratio of word coincidences 
to the total of words in the paper title, while the 
coincidences are given by predefined terms related 
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Fig. 2 Stages of the systematic literature review
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to the topic, e.g., real-time, sag, detection. Likewise, 
an abstract similarity index is calculated in abstracts, 
whereas the cross-citation index is defined as the 
ratio of cross-citations (i.e., the number of citations 
by papers in the search list) to the number of cita-
tions of the most cited paper of the same year or 
later. Similarly, the review cross-citation index is cal-
culated considering only citations by review papers 
in the list. Finally, the journal index is defined as 1 for 
journals and 0 for conference papers.

Weights are estimated for each of the five indices using 
the Analytic Hierarchy Process (AHP) [31]. AHP is a 
multicriteria decision-making approach in which factors 
are arranged in a hierarchic structure. Thus, weights are 
obtained by estimating the relative magnitude of pair-
wise comparisons and further computations as described 
in [31]. The resulting weights for the proposed five indi-
ces are reported in Table 2. The total score is calculated 
for each paper by summing the indices multiplied by the 
corresponding weights. A total of 404 top papers (10% 
of the papers in the search list) are selected according 
to scores considering a larger proportion of papers for 
periods between 2011 and 2021 (i.e., 2011–2015, and 

2016–2021) than for periods before 2011 (i.e., ≤ 2005, 
2006–2010). This prioritization is done to consider more 
papers from recent periods. Also, the number of papers 
selected for types of disturbances is distributed as evenly 
as possible. The results are shown in the sky-blue rectan-
gles in Fig. 4.

3. Quality assessment An assessment is conducted 
on the top 404 full-text papers to reduce the selec-
tion for the critical review, while the five questions 
in Table  3 are formulated. A set of three qualifica-
tions is defined for the questions: {0 (not at all), 0.5 
(moderately), 1 (absolutely)}. AHP is then applied to 
estimate the weight for each question, and the results 
are reported in Table 3. The questions are evaluated 
for each paper, and the total score is calculated as 
the sum of the results of each question multiplied by 
the corresponding weights. Finally, 167 papers with 
a score higher than 0.8 are selected for the critical 
review, as reported by the dark-blue rectangles in 
Fig. 4.

4. Extension method Twelve additional papers related to 
voltage notches are identified and included because 
very few (only 13) are initially detected for this dis-
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Table 2 Weights for indices of the scoring equation

Index Weight

Title similarity 0.3083

Abstract similarity 0.2114

Cross‑citation 0.2883

Review cross‑citation 0.1010

Journal 0.0910

Table 3 Questions for the quality assessment and their weights

Question Weight

Q1: Does the paper address the purpose of our research? 0.3680

Q2: Does the paper present new techniques in the field? 0.2778

Q3: Does the paper have comparative analyses? 0.1321

Q4: Are the results of the study reproducible? 0.1321

Q5: Are the limitations and validity discussed? 0.0900
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turbance. The extension method applied to identify 
additional papers is based on the concepts of bib-
liographic coupling and co-citations as explained in 
[32]. The resulting number of papers is reported in 
the yellow rectangles in Fig. 4.

The selection procedure conducted using the above 
four steps results in the papers reported in Table 4, where 
they are organized according to the proposed categories, 
i.e., period, and type of PQD.

4  Bibliometric analysis
The number of publications related to the detection and 
classification of PQDs over time is shown in Fig. 5, which 
also shows the number of those publications that include 
the term “real-time” (or “online” or “on-line”) in the title, 
abstract, or keywords.

The increasing interest in PQ detection and classi-
fication is observed especially from 2000 to 2010 (see 
Fig. 5). An apparent decrease occurred in 2014, but then 
the trend became positive again up to 2019. While the 
trend of the total number of publications decreased in 
2020 and 2021, those related to real-time show an appar-
ent increase. Moreover, Fig.  5 shows that a small num-
ber of publications include the term “real-time” in title, 
abstract, or keywords, reaching significant appearances 
only in the last decade. This situation highlights the need 
for further studies in the real-time detection and classifi-
cation of PQDs.

To observe the state of research by country, Table  5 
reports the number of publications from different coun-
tries, according to the affiliation of the first author. The 
top seven contributors, i.e., those countries with more 

than 100 publications, are shown. China has the largest 
contribution with a significant lead over the rest, and is 
followed by India, USA, Brazil, and Spain. Table  5 also 
shows the number of those publications with the term 
“real-time”. The corresponding ranking is similar to the 
ranking for the total number of publications, with the 
exception of Brazil which appears in sixth place. Table 5 
also reports the percentages of contribution of the top 
seven countries to the total number of publications, 
with the top three, i.e., China, USA, and India, contrib-
uting more than 50% of the total number of publications 
and more than 60% of the publications with the term 
“real-time”.

Regarding the original language of publications, Eng-
lish is dominant with 85%. Moreover, a significant 13% 
were written in Chinese, while the remaining 2% cor-
respond to other languages such as Spanish, Polish, and 
Portuguese.

A set of categories from the search are also identified 
from titles and the results for the number of publications 
in each category are presented in Fig. 6. The number of 
publications with or without the term “real-time” in the 
title, abstract, or keywords, are also identified for each 
category.

Figure  6a reports the results for general topics 
and shows that the largest number of publications is 
related to detection. The term detection usually refers 

Table 4 References identified for disturbance types and periods

Type of PQD Period References No. of references

Per period Total

Multiple PQDs  ≤ 2005 [33–45] 13 99

2006–2010 [46–63] 18

2011–2015 [64–87] 24

2016–2021 [88–131] 44

Voltage sags  ≤ 2005 [132–135] 4 55

2006–2010 [136–143] 8

2011–2015 [144–154] 11

2016–2021 [155–186] 32

Voltage notches  ≤ 2005 [187–190] 4 25

2006–2010 [191–199] 9

2011–2015 [200–208] 9

2016–2021 [209–211] 3
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Fig. 5 Evolution over time of the number of publications per type 
related to the detection and classification of PQDs

Table 5 Top seven countries according to the total number of 
publications on the topic

Country Total no. of 
publications

Ranking 
for total

No. of publications 
related to real-time

Ranking 
for real-
time

China 1281 (32%) 1 275 (36%) 1

India 549 (14%) 2 127 (17%) 2

USA 300 (7%) 3 62 (8%) 3

Brazil 174 (4%) 4 28 (4%) 6

Spain 153 (4%) 5 37 (5%) 4

Malaysia 139 (3%) 6 30 (4%) 5

Italy 139 (3%) 7 18 (2%) 7
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to algorithms for identifying the occurrence of a PQD. 
The second category according to the number of pub-
lications is monitoring, which refers to the tracking of 
power signals, including the PQDs. In this case, hard-
ware implementation emerges as an important aspect. 
The third category is classification which refers to the 
recognition of the type of PQD, e.g., sag, notch, har-
monics, transient, flicker. The category analysis is 
broader in meaning and comprises several aspects 
described in the rest of the categories. The category 
assessment includes methods for impact analysis of 
PQDs. Characterization refers to the quantification of 
parameters that define a PQD, e.g., depth and duration 
of voltage sags.

The corresponding percentages of publications with 
the term “real-time” in general topics are also shown 
in Fig.  6a. Monitoring has a substantial percentage 
because real-time implementation, i.e., algorithms and 
hardware, is usually discussed in this category. Detec-
tion is also important in real-time applications, e.g., for 
the operation of Dynamic Voltage Restorers (DVR) and 
protection systems. As the term “analysis” is a broader 
concept, it also includes some aspects of real-time 
applications. Classification, assessment, and characteri-
zation are more time-consuming tasks and are gener-
ally used in offline applications.

Figure  6b presents the results for types of PQDs. 
The large number of publications related to volt-
age sags demonstrates that research on the topic is 
already mature. On the other hand, only a few studies 
are related to notches, highlighting that research on 
the topic is incipient and requires further investigation 
given its relevance to the industrial sector. In the case 
of studies considering sags and notches at the same 
time, the terms are searched not only in titles but also 
in abstracts and keywords. However, few publications 

are identified. In this context, tools to analyze simul-
taneously sags and notches can improve the state of 
research and be useful for the industry.

Regarding the corresponding percentage of publica-
tions with the term “real-time”, Fig. 6b shows that more 
real-time applications have been implemented for voltage 
sags, e.g., for the operation of fault protection systems. 
However, the percentage is still low in this category. In 
the case of the simultaneous analysis of sags and notches, 
very few applications in real-time have been developed.

5  Literature review
A comprehensive critical literature review of real-time 
detection and classification of PQDs is developed in this 
section, based on 179 selected papers (see Sect. 3.2). The 
categorization of the type of PQDs according to Sect. 3.2 
is used along with the development of the literature 
review to analyze the articles from the perspective of 
multiple PQDs, voltage sags, and voltage notches.

The category of multiple PQDs includes studies ori-
ented towards the classification of the disturbances. 
Thus, most articles in this category present methods to 
distinguish between a set of PQDs identified from volt-
age waveforms. At the beginning of the research on 
the detection and classification of PQDs, articles were 
focused on tools to extract the features to distinguish the 
types of PQDs. For instance, reference [33] proposes WT 
as the means to transform and extract the features, while 
[40] utilizes ST to extract distinctive features. Thereby, 
in this first period, references [33] and [40], and similar 
studies in [34–37], laid the foundations for the classifica-
tion of multiple PQDs. Afterward, studies were focused 
on the automatic classification of PQDs, mostly using 
AI techniques such as ANN [38, 39], and SVM [50]. In 
this context, other studies included the classification of 
combined PQDs, e.g., sag with harmonics, flicker with 
sag, [61]. Recently, real-time performance in the detec-
tion and classification of PQDs has also been a concern 
[11], because of the applications in fault protection sys-
tems and root-cause detection and mitigation. Another 
real-time application is the analysis of the propagation 
of PQDs using measurements in various nodes of the 
system.

The second category according to the type of PQDs 
refers to voltage sags. This set of articles is generally 
focused on the classification of voltage sags into differ-
ent categories. For instance, some studies use three-
phase classifications of sags [140, 158], which are strongly 
related to the type of faults that cause the voltage sags. 
Another aspect analyzed in this category is the classifi-
cation of sags according to the root causes [133, 147, 
149, 150, 180], e.g., faults, the starting of induction 
motors and heavy loads, and transformer energizing. The 
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characterization of voltage sags, i.e., the quantification of 
the parameters such as duration, magnitude, starting and 
ending phase angle, etc., is also performed in some stud-
ies [132, 173, 174]. Finally, this set of articles also includes 
research on the detection of sags for applications such as 
DVR and protection systems operation [134, 136, 153]. 
In these applications, real-time detection is of utmost 
importance.

The third category according to the type of PQD is 
associated with voltage notches. These studies mainly 
deal with the detection of notches in voltage signals [189, 
190, 194, 205, 206, 209]. The characterization of voltage 
notches is also performed in some cases. However, this 
characterization is usually incipient, ambiguous, and 
misses important features of voltage notches. Moreover, 
the classification according to types of voltage notches 
has not been addressed in the literature.

The categorization of articles in the type of distur-
bances aims to address different topics of interest: the 
classification of PQD types; the classification, charac-
terization, and detection of voltage sags; and the clas-
sification, characterization, and detection of voltage 
notches. However, studies in the category of multiple 
PQDs include voltage sags [34–36, 38–58, 60–75, 77–80, 
82–119, 121–131], and/or notches [33, 37, 40, 43, 49, 52, 
54–56, 61, 62, 65–68, 74, 75, 77, 79, 82, 84, 85, 87, 91, 
94–100, 102, 103, 105–110, 112–116, 118, 121, 123, 124, 
130], though in such cases, there is no particular focus on 
those disturbances.

From a different perspective, the process for real-time 
detection and classification of PQDs can be analyzed 
from the stages and steps, as shown in the proposed 
schema in Fig.  7. In this literature review, four major 
stages are identified, namely: (i) input space, (ii) pre-
processing, (iii) feature engineering, (iv) decision space. 
Moreover, each of the major stages includes the steps 

to achieve their goals. Eight steps are identified in the 
comprehensive process. However, not all the steps 
are always necessary, and hence the proposed schema 
should be considered flexible. In the context of this 
review, the steps are defined as follows:

1. Input data preparation (i) The step for obtaining 
data from different sources for designing and train-
ing algorithms. Sources of data include laboratory 
experiments, field measurements, simulations, and 
synthetic data generated with equations represent-
ing the diverse PQDs. This step constitutes the input 
space stage.

2. Data preprocessing (ii) The step for preparing input 
data to improve efficiency in the subsequent stages. 
Preprocessing has tasks such as segmentation, nor-
malization, and denoising. Data validation to ensure 
reliability and correctness of data, i.e., data qual-
ity, is also part of the data preprocessing step. How-
ever, no extensive details have been described in the 
reviewed literature regarding data validation. This 
step accounts for the preprocessing stage.

3. Transformation (iii) The process of converting raw 
data from one domain, e.g., time, frequency, time–
frequency, to another. Transformations used in PQD 
detection and classification include FT, WT, and ST, 
among others. The transformation step is the first of 
the feature engineering stage.

4. Feature extraction (iii) The computation of numeri-
cal indices (from the transformation outputs/coeffi-
cients) that are usable for tools in the decision space. 
These indices usually comprise statistical variables. 
The feature extraction step is part of the feature engi-
neering stage.

5. Feature selection (iii) The process of selecting fea-
tures and reducing dimensionality to enhance the 
efficiency in the decision space. Selection can be 
manual or automatic using optimization methods 
and dimensionality reduction techniques. The feature 
selection step provides the output of the feature engi-
neering stage.

6. Detection (iv) The identification of states different 
from the normal operation through thresholds and 
triggers. Detection is a step in the decision space.

7. Classification (iv) The distinction of the type of PQD. 
Classification is mostly conducted automatically 
using AI techniques. Classification is a step in the 
decision space.

8. Characterization (of single PQDs) (iv) The calcula-
tion of the parameters that characterize a single PQD 
(e.g., for voltage sags: Point-On-Wave (POW) of ini-
tiation/ending, duration, magnitude, phase angle 

(i) Input space

(ii) Preprocessing

(iv) Decision space

(iii)  Feature engineering

Transformation
3

Input data 
preparation

1

Data 
preprocessing

2

Feature 
extraction

Feature 
selection

4 5

CharacterizationClassification
87

Detection
6

Fig. 7 General scheme for real‑time detection and classification of 
PQDs and transversal topics to be dealt with in the review
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jump). Characterization is a step in the decision 
space.

The literature review is structured and developed 
according to the eight steps to conduct the real-time 
detection and classification of PQDs. The categories 
according to the type of disturbance, i.e., multiple PQDs, 
voltage sags, and voltage notches are analyzed through-
out the comprehensive review. Aspects of the real-time 
operation are also considered.

5.1  Input data preparation
The process of detection and classification of PQDs starts 
with the acquisition of signals. This process can be clas-
sified into two general groups according to the literature: 
measurement-based (laboratory, field) and model-based 
(equations, simulations) techniques. In most cases, the 
model-based techniques are used for algorithm training 
and measurement-based techniques for the deployment 
of the final detector/classifier.

Table  6 summarizes the advantages and drawbacks of 
each approach in the input data preparation step. The 
table also gives the references for where the techniques 
are applied. These references are classified according to 
the “type of disturbance” categories, i.e., multiple PQDs, 
sags, and notches. To give an idea of the importance and 
usage of the techniques, the percentage of the total num-
ber of references per category is also presented (see the 
total number of references per category in Table 4).

5.1.1  Field measurements
The acquisition of real signals under real operating con-
ditions is the main goal of this approach. The same spe-
cialized equipment used in laboratory measurements is 
also required in field measurements, but the signals are 
directly provided by the power grid. The availability of 
events is therefore limited because of their unpredict-
ability. Disturbances having noise, simultaneity between 
deviations and variations, and the evolution and propa-
gation of PQDs affected by power demand variations 
characterize field measurements. These realistic factors 
require the development of robust algorithms for PQD 
detection and classification. Usually, measurements aim 
at catching the highest amount of information but some-
times they are focused on specific PQDs such as voltage 
sags and notches.

5.1.2  Equations
Instead of specialized equipment for the generation and 
measurement of PQDs, some can be abstracted into 
mathematical models that emulate real waveform distor-
tions. In this waveform-level approach, the signals are 
initially built as ideal sinusoidal stored in computational 

structures (i.e., arrays and matrices) and then the dif-
ferent kinds of variations and events are superimposed. 
Although it is highly flexible and easy to change any 
parameters of these equations, it is rather challenging 
to exactly replicate a real disturbance and its evolution 
in time without knowledge of the system features. These 
equations can be extended to represent different kinds 
of disturbances, or specific disturbances such as voltage 
sags and notches.

5.1.3  Simulations
Simulations in specialized software also rely on math-
ematical models. However, this system-level approach 
allows not only the reproduction of different PQDs from 
different operating conditions of power systems, but 
also the assessment of the interactions and evolution of 
disturbances in both time and space. Therefore, simula-
tions can be used to replicate operational conditions 
that produce a certain type of disturbance, modify those 
conditions to stress the system response, combine differ-
ent disturbances in a controlled environment, including 
power system variations to forecast the future behavior 
of PQDs, etc. The simulation results are strongly depend-
ent on how closely the models represent the real system, 
so a validation stage between real measurements and 
simulated results is necessary before forecasting results 
for other operating scenarios.

5.2  Data preprocessing
After the acquisition of PQDs, some techniques are used 
to handle the data before further processing. These tech-
niques are optional and should not modify the useful 
information contained in the acquired signals. The addi-
tional hardware and/or software required at this stage 
may improve the performance of detection and classifica-
tion algorithms in subsequent stages. Table 7 summarizes 
the advantages and drawbacks of these steps, indicates 
references where applications are observed, and reports 
usage percentages according to the “type of disturbance” 
categories.

5.2.1  Segmentation
This technique is used for the isolation in the time 
domain of the most relevant sections of the acquired 
signals, especially when events (see Table  1) are to be 
analyzed. The computational burden of subsequent 
processing stages may be reduced when segmenta-
tion is correctly applied since non-relevant data is dis-
carded. However, the decision on relevance can vary 
when different disturbances coexist at the same meas-
ured signals. Therefore, a set of thresholds are generally 
used when dealing with the detection and classifica-
tion of multiple PQDs. Moreover, segmentation is less 
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frequently used for specific disturbances, as can be seen 
in the literature for voltage sags and notches in Table 7.

5.2.2  Denoising/filtering
Similar to the segmentation technique, the filtering or 
denoising technique aims at discarding the non-rele-
vant information in the acquired signals. In this case, 
the isolation is performed over the spectral compo-
nents of the signals. For this reason, additional hard-
ware (analog filters) and/or processing steps (digital 
filters) may be required. This technique is most use-
ful when the bandwidth of the PQD of interest is 
previously known or when only emissions at certain 
frequencies are of interest (e.g., voltage and currents 
at the fundamental frequency only). Compared to seg-
mentation and normalization techniques, denoising 
has been less used in the context of PQD detection and 
classification.

5.2.3  Normalization
Normalization is the most frequently used data preproc-
essing technique for multiple PQDs and voltage sags but 
is used less frequently in specific detection and classifica-
tion of notches (see Table 7). Similar to segmentation and 
denoising, the normalization step reduces computational 
burden by avoiding the calculation of large numbers. 
This is achieved by the division of all quantities against 
a numerical base, i.e., the rated or peak value of signals. 
However, the scale is lost and the distinction between 
relevant and non-relevant amplitudes will depend on the 
relative choice of the numerical base.

5.3  Transformation
Following the acquisition of data and the eventual appli-
cation of some preprocessing techniques, transformation 
is traditionally the most used stage for signal processing 
purposes. This stage aims at using a different represen-
tation of original data, usually by changing the analysis 
domain, to unveil hidden features and patterns.

As shown in Fig. 8, most of the transformations used in 
PQD detection and classification can be grouped into time, 
frequency, and time–frequency domains. Other miscella-
neous transformation techniques are widely used in other 
domains (speech recognition, arrhythmia classification, 
denoising, image compression, etc.) and have been adopted 
by researchers to decompose and/or cluster voltage and 
current data from power systems for detection and clas-
sification of PQDs. The groups of transformation tech-
niques applied to the detection and classification of PQDs 

Table 7 Summary of data preprocessing techniques

Set of techniques Advantages Disadvantages Application

Multiple PQDs Sags Notches

Refs % Refs % Refs %

Segmentation Isolation of relevant 
data
The reduced com‑
putational burden 
for subsequent 
stages

Thresholds 
required
Subjective 
isolation for 
simultaneous 
PQDs
Additional 
equipment/
processing 
required

[38, 42, 44, 47, 57, 59, 61, 
63, 69, 72, 75, 76, 81, 89, 97, 
99, 101, 108, 124, 128, 130]

21 [159, 162, 168, 174, 175, 
184]

11 [191, 194, 195, 202, 
205, 207, 211]

28

Denoising/filtering [62, 91, 102, 126, 128, 130] 6 [141, 152, 175] 5 [188, 199, 204, 208] 16

Normalization Amplitude‑
independent 
techniques
Thresholds in the 
percentage of the 
original signal

Interpretation 
of results is 
relative
Loss of real‑sig‑
nal amplitude 
features

[42, 48, 50, 54, 55, 58, 59, 
64, 68–72, 74, 76, 80–82, 
88, 91–93, 97, 98, 101, 103, 
108–111, 115, 119, 120, 
122]

34 [140, 141, 143, 144, 
146–148, 150, 152–159, 
161, 162, 164–166, 168, 
181, 182]

44 [209, 211] 8

Mode Decomposition (MD) Sparse Signal 
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Fig. 8 Taxonomy of transformation techniques
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are depicted in Fig. 8, where time-domain transformations 
are further divided into parametric and non-parametric 
techniques. Further descriptions of each of the time-, fre-
quency-, and time–frequency-domain techniques are pro-
vided in the following sections.

The most relevant advantages and disadvantages of the 
transformation techniques are presented in Table  8. The 
table also reports references of applications and the respec-
tive percentages per category according to the type of PQD.

5.3.1  Time domain
Time-domain transformations are widely used to track 
the evolution of monitored signal features through time. 
They are commonly used to analyze PQ events like 
interruptions, transients, rapid voltage changes, swells, 
and sags because they are in principle unpredictable 
and non-periodic phenomena (see Table  1). Neverthe-
less, PQ deviations like notches are also processed in 
the time domain since their spectral signature is spread 
over a wide frequency range. Time-domain transforma-
tions shown in Fig.  8 can be subdivided into non-para-
metric, e.g., tracking of symmetrical components, DQ0, 
Time-time Transform (TT), Clarke transform in com-
plex domain Space Phasor Model (SPM), Phase Space 
Reconstruction (PSR), MM, etc., and parametric, e.g., 
KF, Phase-Locked Loop (PLL), Adaptive Filters (AF), etc. 
Non-parametric transformations decompose the origi-
nal measured signals into components that clearly show 
how the PQDs are progressing in time, whilst parametric 
transformations use assumptions about the statistical dis-
tribution of the population from which the samples (sig-
nals) were taken. Parametric transformations are mostly 
used to track and statistically estimate magnitudes, phase 
angles, frequency, etc. Although transformations relying 
on phasor theory, like symmetrical components, belong 
in principle to frequency domain abstraction, the evolu-
tions of the computed amplitudes and phase angles are 
usually analyzed in the time domain.

5.3.2  Frequency domain
The frequency-domain transformations are essentially 
applied to steady-state signals using FT. This transforma-
tion decomposes distorted signals into a summation of 
pure sinusoids having different frequencies. The Fast FT 
(FFT) is a widely known technique for Discrete FT (DFT) 
computation. The computation of DFT is carried out as 
[66]:

where N is the number of samples in one cycle, n is the 
order number of the signal cycles, and n = 1, 2, …, 10, 

(1)

Vn[k] =

N−1
∑

i=0

v[i + (n− 1) · N ] · exp
[

−j(2πki)
/

N
]

which gives the absolute value of the argument. Vn[k] is 
the DFT for the samples contained in the nth cycle, v[i] 
represents the sampled input signal, i = 0, 1, 2, …, L–1, 
with L being the length of the signal.

For the detection of multiple PQDs, FFT has been used 
mostly for the computation of fundamental or specific 
harmonic amplitude, phase angle shift between harmonic 
components, RMS values, and total harmonic distor-
tion [66, 89, 90, 97, 102]. Although FFT and DFT may 
yield inaccurate results for non-stationary signals, some 
studies have adopted this transformation for voltage sag 
detection, while some have used FFT for notch analysis 
[188] because the spectral components of this distur-
bance are rather spread over the whole frequency range. 
However, FFT has also been used in combination with 
WT [61, 80, 189], 192, 196] and Mode Decomposition 
(MD) [99] techniques to cope with non-stationary PQDs.

5.3.3  Time–frequency domain
Transformations classified in the time–frequency domain 
keep most of the advantages of time and frequency tech-
niques. These techniques can provide time and frequency 
information at the same time, which helps improve the 
accuracy of PQD detection and classification algorithms.

STFT is the computation of FT over a section of the 
signal assumed to be stationary. STFT has been used for 
detection of multiple PQDs [35, 102] and voltage sags 
[137, 160].

WT, also known as a multiresolution analysis, decom-
poses the original signal into various scales of a short-
term waveform called the “mother wavelet”. Discrete WT 
(DWT) is the discrete realization of WT and has been 
widely used for detection and classification of multi-
ple PDQs as the main transformation technique [33, 34, 
37–39, 42, 44–46, 48, 51, 53, 55, 59, 60, 62–64, 69, 76, 83, 
95, 101, 110, 123] or combined with other techniques [35, 
36, 41, 61, 73, 80, 102, 117, 126]. It has also been used as 
the main transformation technique for the detection and 
classification of voltage sags [133, 142, 146, 154, 168, 169] 
and notches [187, 190, 191, 193, 194, 197–199, 204, 208], 
or combined with other techniques for voltage sags [160, 
181, 186] and notches [189, 192, 196, 202]. DWT is given 
by [33]:

where ψm,n(t) is the mother wavelet.
ST is a hybrid technique that includes a phase correc-

tion to the WT and a variable Gaussian window to STFT 
to get a combination of these two techniques. ST can 
be calculated by multiplying the continuous WT with a 
phase factor as [40]:

(2)DWTψx(m, n) =
∞

−∞

x(t)ψ∗

m,n(t)dt
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ST has been used for the detection and classification 
of multiple PQDs as the main transformation technique 
[40, 43, 49, 52, 54, 57, 68, 70–72, 75, 77, 78, 81, 85, 92, 
94, 96, 104, 105, 118, 120, 125] or in combination with 
a spline wavelet [41], TT [65, 109, 114], VMD [88], WT 
[117], and others [102]. Similarly, it has been used for the 
assessment of sags as the main technique [143, 149, 178] 
or combined with VMD [176] and FT [184].

Finally, GT, Hilbert Transform (HT), and Chirplet 
Transform (CT) are other time–frequency techniques 
used for the detection and classification of PQDs. GT is 
mostly known as an accurate tool for phasor estimation 
and has been used as a measurement tool for the analy-
sis of events (short-term deviations). It has been mainly 
applied in combination with the Wigner distribution 
function, resulting in the so-called Gabor-Wigner Trans-
form (GWT) [58], and with time–frequency representa-
tion. HT of a real-valued time-domain signal produces 
an orthogonal, real-valued time-domain signal that is 
90° (π/2 radians) shifted from the original. This tech-
nique has been widely applied alongside Empirical Mode 
Decomposition (EMD), resulting in the so-called HHT. 
Researchers have applied HHT for the detection and 
classification of multiple PQDs [56, 73, 79, 84, 102, 107, 
113], and specifically for voltage sags [147, 150, 173], but 
not yet to the specific assessments of voltage notches. CT 
can be seen as the generalization of FT, STFT, and WT. 
Analogous to the mother wavelets in WT, chirplets are 
usually generated from a single mother chirplet which is 
a windowing function. It has been applied for the assess-
ment of multiple PQDs [98] and voltage notches [202]. 
Voltage sags have not yet been specifically addressed nor 
characterized with CT.

5.3.4  Miscellaneous
Transformation techniques widely used in other 
domains have been adopted by researchers for the 
detection and classification of PQDs. The MD tech-
nique is mainly composed of EMD [86, 93, 129] and 
VMD [88, 99, 100, 124, 130] for the assessment of 
multiple PQDs, and also for the specific assessment of 
voltage sags [176]. EMD takes the linear or non-linear 
input signal and iteratively decomposes it into a series 
of smaller components known as Intrinsic Mode Func-
tions (IMF). VMD is based on a constrained variational 
optimization problem and is a non-recursively adaptive 
technique that decomposes a linear or non-linear input 
signal into a finite number of sub-signals or modes hav-
ing specific sparsity properties (compactly band-lim-
ited IMF). There are also other techniques adapted for 
PQD detection and classification such as Sparse Signal 

(3)S
(

τ , f
)

= exp
(

i2π f τ
)

·W (τa) Decomposition (SSD) on an overcomplete hybrid dic-
tionary matrix [87], Singular Spectrum Analysis (SSA) 
along with Curvelet technique [103], 2D image tech-
niques (gray-scale images) [112, 179, 181], numerical 
pencil [134], matrix pencil [153], and Goertzel method 
[166].

5.3.5  Quantitative analysis of transformation techniques
Figure 9 depicts how transformation techniques are dis-
tributed according to the analysis domain, how they 
are used (main technique or in combination with other 
techniques), type of disturbance, and real-time applica-
tions. Specifically, Figs.  9a and b rank respectively the 
most popular transformation techniques for detection 
and classification of PQDs, according to the absolute and 
relative number of articles found in this literature review. 
Techniques classified into the time–frequency (52%) and 
time domains (19.7%) represent 71.7% of the total num-
ber of transformation techniques, whereas WT and ST, 
which are time–frequency domain techniques, repre-
sent 44.1% of the total transformation techniques. WT 
is used either as the main technique or in combination 
with other techniques, such as FFT, ST, and other time-
domain techniques.

The evolution of transformation techniques is 
described in Fig. 9c. WT has been intensively used as the 
main time–frequency technique for the detection and 
classification of PQDs since 1996 [33], and from 2011 
onwards it has been used in combination with other 
techniques. ST and other time–frequency techniques 
have increased their participation in PQDs detection and 
classification, as well as time-domain techniques such as 
SPM, PSR, and (extended) KF/AF. Nevertheless, the com-
bination of several techniques has seen increased interest 
from researchers, especially in the last six years.

In terms of the PQDs to be detected and classified, 
Fig. 9d shows that WT, time-domain techniques, and the 
combination of several techniques have been used for the 
assessment of multiple PQDs as well as voltage sags and 
notches. Although WT has been the preferred technique 
for the assessment of voltage notches, time-domain tech-
niques are becoming relevant for assessing this type of 
disturbance. The trend regarding transformation tech-
niques is to develop one technique, or a combination of 
several, that can be used for the accurate detection and 
classification of the highest number of PQDs (variations 
and events, see Table 1).

Figure  9e shows that WT, ST, and time-domain tech-
niques (SPM, PSR, and KF/AF) are used for real-time 
detection. Real-time detection and classification are also 
performed by the combination of transformation tech-
niques such as WT and FFT, WT and ST, etc.
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5.4  Feature extraction
Feature extraction aims to reduce the amount of data 
from the transformation stage that will be processed for 
the detection and classification of PQDs. A set of sta-
tistical, time series, spectral and image features can be 
used for this purpose. A set of features describing one 
PQD, e.g., variations, may not be suitable for describing 
another type of PQD, e.g., events. Therefore, establishing 
a set of comprehensive, robust, and accurate features that 
allow the detection of different PQDs is one of the most 
challenging tasks in the process.

Figure 10 depicts the categories into which the feature 
extraction stage can be further divided. The main advan-
tages and disadvantages are listed in Table 9, which also 
includes references with applications and the respective 
percentage of usage according to the type of disturbance.

5.4.1  Statistical features
Mean and median are the set of most used statistical fea-
tures for central tendency. Arithmetic mean (also known 
as arithmetic average) is a central tendency measure for 
a finite number of values from an observation process 
(sampling). This is calculated as the sum of all values 
divided into the amount of data and is a relatively simple 
way of computation (low computational cost) but sensi-
tive to outliers (data with atypical values). This metric is 
widely used for feature extraction in multiple PQDs, and 
specifically for voltage sags and notches (see Table  9). 
Less sensitive to outliers but with a compulsory “order-
ing” process, the median is the other central tendency 
widely used for feature extraction. When dealing with a 
large enough dataset, the underlying population distribu-
tion may be assumed as normal (Gaussian). Therefore, 
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similar values for both mean and median are obtained. 
However, many processes do not follow a normal distri-
bution, and thus median may be a more accurate meas-
ure of central tendency than the mean.

In contrast to central tendency, a measure of disper-
sion is achieved by many different indices. Maximum 
and minimum values are easy-to-compute metrics that 
give general information about the analyzed dataset. 
The interquartile range is a descriptive metric defined 
as the difference between the 75th and 25th percentiles 
and needs an ordering process that may be challenging 
for online applications in embedded hardware. Devia-
tion metrics in the form of maximum deviation, standard 
deviation, mean absolute deviation and median absolute 
deviation compute the distance between the observed 
value of a variable and a central tendency metric. Vari-
ance and Higher-Order Statistics (HOS) such as skewness 
and kurtosis aim at describing the shape of the underly-
ing probability distribution function. These metrics are 
widely used for detection and classification of multiple 
PDQs, voltage sags and voltage notches (see Table 9).

5.4.2  Time series features
Time series are sequences of data points ordered in the 
time domain. The sampling process is usually performed 
at a fixed frequency, and therefore the time between suc-
cessive samples is theoretically the same. In the context 
of electrical engineering, time-varying electrical vari-
ables such as voltages and currents are sampled through 
analog–digital converters, which convert the real-life 
analog signals into discrete signals. The cyclic nature of 
AC systems is defined by a cycle, which is the time that a 
signal repeats its values in the time domain. Therefore, it 

is possible to characterize a signal by extracting sample-
based or cycle-based features.

Sample-based features take advantage of the evolution 
of discretized signals in the time domain. The features are 
the extracted samples and therefore very detailed infor-
mation on signal evolution can be retrieved. However, a 
large amount of data can result from this stage if a high 
sampling frequency is used. Sample-based feature extrac-
tion techniques such as instantaneous values, phase angle 
and momentary deviation (Euclidean distance) are used 
for multiple PQDs, voltage sags and notches according to 
the references indicated in Table 9.

Cycle-based features are focused on the evolution of 
periodic signals over time. In this sense, the features are 
extracted in multiples of one cycle of the main signal and 
therefore the amount of processed data is much less than 
that using sampled-based features. However, informa-
tion on sub-cycle PQDs like notches, spikes and tran-
sients is no longer available in this approach. RMS value, 
crest and form factors, energy, entropy, correlation, and 
signal-to-noise ratio are usual metrics computed from a 
cycle-based approach. These metrics are used for feature 
extraction of multiple PQDs, voltage sags and notches 
(see Table 9).

5.4.3  Spectral features
Spectral features are a set of indices that naturally result 
after the use of frequency or time–frequency domain 
transformation techniques. In the context of power sys-
tems, the fundamental frequency is the nominal fre-
quency at which most of the electric power is generated 
and transmitted (theoretically 50  Hz or 60  Hz). In con-
trast, spectral distortion is the result of the nonlinear, 
nonconstant behavior of electrical equipment that indi-
cates a deviation from the ideal (reference) pure sinu-
soidal signals. In the context of power systems, spectral 
distortion can be generally classified into the harmonic 
range (below 2 kHz), the so-called supraharmonic range 
(between 2 and 150  kHz) or the high-frequency range 
(above 150 kHz). Fundamental frequency and harmonic 
distortion are used for the detection and classification of 
multiple PQDs, voltage sags and notches (see Table  9). 
There is a special case of harmonic distortion, called Dis-
tortion Bands, where the distortion is computed in other 
ranges different from harmonic, supraharmonic or high-
frequency ranges [197, 202].

5.4.4  Image features
Image features are mostly related to 2D functions and/or 
representations of PQDs. Taking advantage of the steady-
state cyclic variation of voltage and current in power 
systems, some transformation techniques (SPM, PSR, 
instantaneous symmetrical components, etc.) describe 
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these signals as phase vectors in the complex plane (pha-
sors). From this, the most popular 2D feature extraction 
technique relies on Ellipse features since the resultant 
circumferences can give useful information about the 
features of the variations and events listed in Table  1. 
Ellipse features have been used for specific detection 
and classification of voltage sags [151–153, 157, 158, 163, 
172]. Other features taken from the 2D representation 
of PQDs are shape features and factors (center of mass, 
eccentricity, convexity, centroid distance, chord length, 
etc.) [140, 169], binary image [50, 112], and image matrix 
[111], among others.

5.5  Feature selection
The step of feature selection involves identifying as few 
characteristics as possible to obtain enough information 
that can yield suitable results in the decision space stages 
(detection, classification, and/or characterization of 
PQDs). Hence, the ways of selection and the selected fea-
tures depend on what suitable results mean in the con-
text of each study. The feature selection also reduces the 
computational burden in the decision space and usually 
leads to more accurate results.

Different categories have been proposed for feature 
selection techniques in the literature. For instance, ref-
erence [76] proposes three main categories, namely, fil-
tering, wrapper, and embedded, which are related to the 
level of dependence of the feature selection on the deci-
sion (learning) algorithms. Thus, filtering approaches are 
very independent, and embedded approaches intertwine 
the selection and decision algorithms. In this literature 

review, three groups of methods are identified, including 
handcrafted, optimization methods, and dimensionality 
reduction algorithms.

Table 10 summarizes the advantages and drawbacks of 
the most relevant feature selection techniques identified 
in the literature review according to the proposed clas-
sification. The table also reports the references where the 
methods are applied according to the type of disturbance 
categories and presents the usage percentages.

It is worth mentioning that deep learning techniques 
perform an automatic process of feature selection. It is 
conducted in the first layers of the classifiers where the 
best features for the decision space are automatically 
selected. Therefore, no category is included in this sec-
tion for this type of tool because no external intervention 
is required.

5.5.1  Handcrafted/empirical
In handcrafted feature selection, a detailed manual analy-
sis is performed on the extracted features to observe the 
differences according to the type of PQD. For instance, 
this approach is observed in [33] where coefficients 
resulting from the WT and multiresolution analysis are 
analyzed for sample signals with different PQDs. The 
study in [33] and many others, e.g., [34–41], show how 
the analysis can be mostly supported by visual inspec-
tion of signals (time-domain waveforms) and extracted 
features (time-domain indices). Most of the handcrafted 
feature selections observed in the literature apply a con-
textual approach where a physical meaning is given to 
the extracted features. Some examples of contextual 

Table 10 Summary of feature selection techniques

Set of techniques Advantages Disadvantages Application

Multiple PQDs Sags Notches

Refs % Refs % Refs %

Handcrafted Physical interpretation 
of contextual features
Ease understanding

Time‑consuming
Detailed knowledge of 
features and phenom‑
ena is usually required

[33–41, 43–54, 56–62, 
64, 66–74, 77–94, 
96–99, 101, 102, 104, 
106–108, 110, 112, 113, 
115, 117, 118, 120, 122, 
126, 128]

77 [132–140, 142–157, 
160, 161, 163, 166, 169, 
172–174, 176, 178, 181, 
182, 185, 186]

71 [187–210] 96

Optimization methods Yield optimal sets of 
features
Sound theoretical 
background
Diverse methods

Not necessarily a physi‑
cal interpretation of 
features
High computational 
burden
They rely on the proper 
a priori selection of 
relevant features

[55, 95, 102, 109, 114, 
123, 127]

7 [168, 177, 185] 5 ‑ 0

Dimensionality reduc‑
tion

Physical interpretation 
of indices
Diverse methods and 
indices

May lead to some data 
loss
Handcrafted rules are 
required in most cases

[42, 62, 75, 76, 98, 100, 
102, 110, 112]

9 [141, 162, 170, 177] 7 ‑ 0
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feature selection are [33–41]. The literature also shows 
that other empirical approaches such as sequential for-
ward selection, sequential backward selection, and ran-
dom mutation have been mainly used for the detection 
and classification of multiple PQDs. In these empirical 
approaches, a set of features are obtained beforehand 
based on expert knowledge or using similar features to 
previous studies. Then, in forward selection methods, 
e.g., [60, 88, 89, 91, 96, 102, 112], features from the estab-
lished set are included one at a time, and the performance 
of the classifier is verified. The process is repeated until 
the performance has no apparent improvement. Con-
versely, backward selection, e.g., [88], uses the complete 
set of features and removes one at a time until the desired 
trade-off between accuracy and computational perfor-
mance is reached. On the other hand, random mutation 
tests random subsets of features and selects the one with 
the best performance [57, 62, 64, 71, 117].

Those studies from the literature focused on voltage 
sags mainly use contextual feature selection. For instance, 
reference [132] extracts directly the features from the 
voltage waveforms according to standard definitions, i.e., 
initial phase angle shift, recovery period, voltage change. 
In other cases, coefficients from transforms, e.g., WT 
[133] and ST [143], are analyzed contextually accord-
ing to their correspondence to the standard parameters 
that characterize voltage sags, i.e., magnitude, duration, 
etc. A combination of forward and backward selections 
with GA to select the best features to identify voltage sag 
source location (upstream or downstream) is proposed in 
[185].

In the studies focused on voltage notches, contextual 
feature selection is dominant for handcrafted methods 
[187–210]. In this case, selected contextual features are 
analyzed visually from the coefficients of WT.

5.5.2  Optimization methods
Optimization methods have also been used for feature 
selection purposes in PQD detection and classification. 
According to [212], a mathematical optimization method 
which consists of finding the best possible solution by 
changing variables that can be controlled, is often subject 
to constraints. Optimization methods can be classified 
as deterministic (exact) or stochastic (approximate), and 
stochastic methods can be further divided into heuristic 
and metaheuristic. Most methods used for PQD detec-
tion and classification are metaheuristic. Metaheuristic 
methods include exploratory search methods such as 
GA, and swarm optimization algorithms such as particle 
swarm optimization. For instance, GA is used in [55, 102, 
109] to find the optimal set of features to classify multiple 
PQDs with high accuracy. This is based on the mechan-
ics of selection and survival of the fittest, and consists of 

three operations including reproduction, crossover, and 
mutation [55]. The studies in [55, 102, 109, 127] show 
that GA maintains or improves the classification accuracy 
while it decreases the computational burden (reducing 
the number of features). A variation of GA is presented 
in [109], where a fast and elitist nondominated sorting is 
used to generate Pareto-optimal solutions. This modifi-
cation offers better speed, solution spread, and conver-
gence. The artificial bee colony optimization algorithm 
is used to improve the performance of a multiple PQDs 
classifier in [95], while the artificial bee colony is used in 
[123] in combination with particle swarm optimization 
to improve the accuracy of a PNN in PQD classification. 
The artificial bee colony algorithm is a swarm intelligence 
optimization technique where different types of bees 
apply strategies for finding the best sources of food (solu-
tions). This algorithm uses three groups of bees, namely, 
employed bees, onlooker bees, and scout bees. Employed 
bees search for food in specific sources and share the 
information to onlooker bees, whereas scout bees search 
for new sources of food. This optimization method pro-
vides an optimal subset of features with fast convergence 
[95]. Other swarm colony algorithms have also been used 
for feature selection. For instance, ant colony optimiza-
tion [114] is inspired by the foraging behavior of ants, 
and offers high accuracy in the classification of multiple 
PQDs and a faster solution to an optimal feature subset 
than other studies.

Feature selection based on optimization techniques is 
also used in studies focused on voltage sags. The study 
in [168] uses ant lion optimization to improve perfor-
mance in classifying the underlying causes of voltage 
sags. This optimization technique mimics how ant lions 
hunt and consume their prey and provides advantages 
such as good population diversity, storing good solutions, 
exploitation, exploration, and flexibility [168]. Similarly, a 
teaching–learning-based optimization technique is used 
in [177]. The teaching–learning-based method is a popu-
lation algorithm that mimics the influence of a teacher on 
the output of learners in a class. Results in [177] demon-
strate good accuracy in classifying causes of voltage sags 
in noisy signals with a reduced subset of optimal fea-
tures. GA is used in [185] for voltage sag source location 
classification.

5.5.3  Dimensionality reduction
In machine learning, dimensionality reduction refers to 
decreasing the number of input variables in a model, i.e., 
selecting a subset of the original variables (features) and 
converting the data to a lower-dimensional space [213]. 
Dimensionality reduction may be useful for efficiently 
storing and processing data. Extensive techniques are 
used in machine learning for dimensionality reduction. 
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Principal Component Analysis (PCA) is one of the most 
used techniques. PCA is a multivariate technique that 
analyzes a data table with several variables and extracts 
the important information to represent the table as a 
reduced set of new orthogonal variables called princi-
pal components [214]. PCA is used for feature selection 
in multiple PQD classification in [62], while multiway 
PCA is used for the classification of voltage sags in [141]. 
Likewise, Independent Component Analysis (ICA) has 
been also used in applications of voltage sag classification 
[162, 177]. Other dimensionality reduction techniques 
observed in the literature for applications of multiple 
PQD classification include information gain measure-
ment [42], Fischer linear discriminant analysis [100], 
k-means based apriori [76], Gini index-based threshold 
for selection of features [75, 98, 110, 112], and maximum 
relevance minimum redundancy [102]. In the case of 
voltage sag classification, k-means-singular value decom-
position is also used [170], whereas decision trees and the 
Gini index are used in [211] for binary classification of 
voltage notches (non-notch/notch).

5.6  Detection
In this review, detection refers to the identification of 
states different from the ideal conditions of voltage and 
current waveforms (signals with no disturbance) through 
thresholds, triggers, and other techniques.

According to the above definition, detection may over-
lap in some cases with the step of classification because 
the classification process usually includes a category for 
ideal conditions of voltage and current waveforms. This 
situation mainly occurs in the classification of multiple 
PQDs, e.g., [118, 121]. In such cases, the detection should 
be considered as part of the classification algorithm and 
is mostly used in offline applications, where techniques 
are applied to stored signals. For real-time applications, 
given that no threshold or trigger occurs, the complete 
algorithms are constantly executed with a certain perio-
dicity and the process requires high computational per-
formance and storage capacity. There are exceptions in 
the classification of multiple PQDs, where detection is 
implemented as a previous and independent step of the 
process using techniques such as AF [36, 115], sine wave 
inference [64], and Euclidean square distance [106].

In the case of voltage sag classification, detection is 
mostly achieved as a previous independent step using 
techniques such as empirical/handcrafted definition of 
thresholds [132, 133, 137, 139–141, 148, 151–153, 163, 
172], statistical-based sequential method [135], and ICA 
[177].

Detection has been described as an important step in 
combination with classification in the decision space. 
However, detection as the only aim of the decision space 

is also of interest for some applications such as the opera-
tion of DVR [134, 184], voltage sag compensators [136, 
145], and protection systems [146]. In these applications, 
the process includes some characterization of single 
PQDs. For voltage sags, techniques used for detection 
include adaptive notch filter [136], KF [138, 156, 161], 
integrator model [155], harmonic footprint [160], ICA 
[162], and Goertzel algorithm [166]. When the interest 
of the study is the characterization of voltage notches, 
detection has been conducted using the Teager energy 
operator and threshold algorithm [201], and the Euclid-
ean norm [206, 209].

5.7  Classification
The main purpose of classification is to categorize the 
PQDs observed in voltage and/or current signals accord-
ing to the types of deviations from the ideal waveforms. 
For instance, Table 1 presents some of the deviation types 
that identify the categories of PQDs. Among the catego-
ries of PQDs there are voltage sags and swells, harmonic 
distortion, transients and voltage notches, flicker, imbal-
ance, etc. Classification is mostly conducted accord-
ing to those categories. However, some approaches also 
categorize the phenomena according to the root causes 
of the PQD. For instance, reference [81] presents a cat-
egorization according to different causes, namely, fault, 
self-extinguishing fault, line energizing, non-fault inter-
ruption, and transformer energizing. Similarly, voltage 
sags are usually classified according to the main under-
lying causes, i.e., faults, motor starting, and transformer 
energizing [175–180].

Several techniques for the classification of PQDs have 
been identified from the analysis of the selected lit-
erature. A taxonomy of these techniques is proposed 
in Fig.  11, which shows three major categories, namely, 
handcrafted, probabilistic, and AI-based methods. The 
latter category is divided into various subcategories as it 
is the most widely used in the literature for the detection 
and classification of PQDs. Especially, machine learn-
ing tools have been widely used for the task of classifica-
tion. Machine learning is a field of AI that focuses on the 
development of algorithms to make computer systems 
able to learn from data. Machine learning can be further 
divided into supervised learning, i.e., when algorithms 
need labeled data for training, and unsupervised learn-
ing, when no labels are required but are automatically 
identified by algorithms. In this literature review, only 
supervised learning algorithms are analyzed because they 
are the most used ones.

Table 11 reports the advantages and drawbacks of clas-
sification techniques, references of applications and per-
centage of usage according to the type of disturbance.
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5.7.1  Handcrafted/empirical
In handcrafted classification, thresholds to identify the 
categories of PQDs are defined by the observation of 
the extracted features during diverse experiments or by 
using expert knowledge on the physical interpretation 
of the phenomena. For instance, in [33] the coefficients 
of the WT are used to detect a variety of PQDs obtained 
from field measurements. Other approaches use hand-
crafted classification of voltage sags, e.g., reference [137] 
presents a method to classify sags according to their root 
causes including faults, motor starting, and transformer 
energizing based on thresholds for the STFT. Reference 
[148] classifies voltage sags according to the type of fault, 
based on defined ranges for indices calculated with sym-
metrical components. Other methods [153, 163, 172], 
analyze visually the ellipses generated through the SPM 
in the complex plane to define manually the ranges of the 
ellipse parameters for the types of sags.

5.7.2  Probabilistic
The probability of a signal containing a certain PQD is 
determined from the probability density functions of 
the extracted features associated with the disturbance. 
Examples of probabilistic methods include Parseval’s 
theorem [34], the maximum likelihood [36], and the defi-
nition of ranges for statistical variables [40, 41]. Proba-
bilistic methods are also used to identify the categories 
for classifying sags according to root causes and location 
(upstream or downstream). These methods include the 
singularity detection theory [133], the statistical-based 

sequential method [135], and the energy-based method 
[139].

5.7.3  Shallow artificial neural networks (ANNs)
ANNs are computational models of reasoning inspired 
by the human brain [215], and comprise a set of proces-
sors (neurons) interconnected through weights passing 
signals from one neuron to another. An ANN can model 
complex nonlinear functions using extensive simple 
operations. Shallow ANNs are formed by an input layer, 
one or two hidden layers, and an output layer. ANNs are 
typically used in classification problems where each neu-
ron of the output layer represents a category and is acti-
vated according to the respective inputs. In the problem 
of multiple PQDs and voltage sag classification, several 
types of shallow ANNs have been used taking advantage 
of their flexibility and adaptability to problems where 
labels are well identified, for instance, the learning vector 
quantization [37–39], probabilistic neural network [44, 
52, 56, 65, 71, 84, 95, 102, 123, 147, 168], self-organizing 
learning array [46], radial basis function [47, 83], mul-
tilayer perceptron [48, 53, 57, 65, 89, 93, 102, 168, 177, 
178], adaptive linear network [82], feedforward [82, 85, 
102], backpropagation [90], random vector functional 
link [113], and modular ANN [143]. Most recently, a 
learning algorithm known as ELM has been gaining 
popularity because of its remarkable efficiency. ELM ran-
domly chooses hidden nodes and analytically determines 
the output weights of a single-layer feedforward network 
[216]. Examples of ELM applications are [81, 94, 100, 
107, 108, 169, 176, 178].

5.7.4  Deep artificial neural networks (ANNs)
Deep learning has emerged as a new machine learning 
paradigm where deep ANNs are composed of multiple 
processing layers to learn representations of data with 
multiple levels of abstraction [217]. This paradigm can 
dramatically improve the automatic classification abili-
ties in diverse areas such as speech recognition, image 
processing, and detection and classification of PQDs. A 
remarkable improvement provided by deep learning, and 
the main motivation to apply these types of algorithms to 
PQD detection and classification, is the ability of models 
to automatically extract the best set of features from raw 
data to conduct classification. Convolutional Neural Net-
works (CNN) have been widely used in multiple PQDs 
and voltage sag classification [103, 111, 116, 119, 121, 
125, 130, 131, 158, 164, 167, 171, 179, 183]. Other deep 
learning models have been particularly used in the classi-
fication of voltage sags according to the root causes, e.g., 
deep feedforward ANNs [124], Long Short-Term Mem-
ory (LSTM) [129, 159, 180], Deep Belief Networks (DBN) 
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[165, 175], and independently recurrent neural networks 
[182].

5.7.5  Decision trees
Decision trees are knowledge-based systems obtained 
by inductive inference from examples [218]. Then, 
these systems are driven by the explicit representa-
tion of knowledge. Simple in application, decision trees 
allow for high efficiency which is essential for real-
time applications. Moreover, these models provide 
good physical interpretation of the phenomena. These 
advantages have motivated widespread use of decision 

trees, especially in the classification of multiple PQDs, 
though with lower usage in the classification of volt-
age sags and notches. Simple decision trees are used 
in the classification of multiple PQDs [42, 49, 66, 70, 
75, 77, 85–87, 89, 96–99, 101, 102, 109, 114, 117, 118, 
128]. Some variants such as random forest [102, 105, 
112, 126] and bagging predictor [97, 98] and rule-based 
classifiers [72, 80, 91, 122], have been also used in the 
literature for multiple PQD classification. Rule-based 
classifiers are also used in [140, 151, 152] for voltage sag 
classification and in [200] for voltage notches, whereas 
decision trees are used in ensemble models as weak 

Table 11 Summary of classification techniques

Type of technique Advantages Disadvantages Application

Multiple PQDs Sags Notches

Refs % Refs % Refs %

Handcrafted Simple application
Physical interpretation
Fast operation

Inaccuracy
Expert knowledge 
needed
Time‑consuming design

[33] 1 [137, 148, 153, 163, 172] 9 – 0

Probabilistic Simple application
Sound theoretical foun‑
dation
Physical interpretation

Difficult modeling and 
implementation

[34, 36, 40, 41, 44, 70, 102] 7 [133, 135, 139, 141] 7 – 0

Shallow ANN Flexibility
Detailed knowledge of 
the phenomena is not 
required
Able to solve nonlinear 
functions

Time‑consuming training
Extensive data for train‑
ing
Handcrafted feature 
extraction

[37–39, 44, 46–48, 52, 53, 
56, 57, 62, 64, 65, 71, 79, 
81–85, 89, 90, 93–95, 100, 
102, 106–108, 113, 123]

33 [143, 147, 168, 169, 
176–178]

13 – 0

Deep ANN Flexibility
Detailed knowledge 
of phenomena is not 
required
Able to solve nonlinear 
functions
Automatic feature extrac‑
tion

The very high computa‑
tional burden for training
Extensive computations 
during operation hinder 
real‑time applications

[103, 111, 116, 119, 121, 
124, 125, 129–131]

10 [158, 159, 164, 165, 167, 
171, 175, 179, 180, 182, 
183]

20 – 0

Decision tree Very simple application
Efficiency for real‑time 
application
Robustness to outliers 
and noisy data

Complex decision trees 
can be difficult to under‑
stand
Complexity increases 
exponentially with the 
size of the tree

[42, 49, 66, 70, 72, 75, 
77, 79, 80, 85, 87, 89, 91, 
96–99, 101, 102, 104–106, 
109, 112, 114, 117, 122, 
126, 128]

30 [140, 151, 152, 185] 7 [200] 4

SVM Sound theoretical foun‑
dation
Only a dozen examples 
for training are required

Computational inef‑
ficiency
Low scalability

[47, 50, 51, 59, 60, 63, 69, 
74, 76, 86, 88, 92, 98, 101, 
102, 110, 114, 115, 127]

19 [149, 150, 168, 170, 177, 
185]

11 [211] 4

k‑NN Very simple application
Ease understanding

Reduced accuracy
Sensitive to the choice 
of k

[55, 65, 102, 114] 4 [171, 185] 4 – 0

Fuzzy logic Better representation of 
expert knowledge
Physical interpretation of 
events
Robustness to noisy data

Reduced accuracy
No systematic
It depends on human 
knowledge
A lot of testing is neces‑
sary

[43, 45, 48, 54, 61, 64, 67, 
68, 96, 120]

10 [132] 2 [189] 4
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classifiers in combination with other methods [185] for 
voltage sag classification.

5.7.6  Support vector machines (SVM)
SVM are robust supervised learning models applied in 
classification and regression problems. The basic idea 
behind SVM is to maximize the gap between different 
classes [219]. Based on this feature, SVM can be trained 
using a reduced number of examples. This makes this tool 
promising in cases where extensive training data is not 
available as in some applications of PQD detection and 
classification. SVM have been widely used for detection 
and classification of PQDs and voltage sags, while hav-
ing lower usage for voltage notches (see Table 11). Vari-
ants of SVM such as multiclass SVM [51, 110, 115], least 
square SVM [76, 101, 170], rank SVM [86], and directed 
acyclic graph SVM [92, 127] have been also used.

SVM are used for notch identification in [211], where a 
classifier, i.e., SVM, is used to obtain a binary categoriza-
tion of voltage signals, namely, non-notch or notch.

5.7.7  k‑nearest neighbor (k‑NN)
The k-Nearest Neighbor (k-NN) algorithm finds a group 
of k objects in the training set that are closest to the test 
object, and bases the assignment of a label on the pre-
dominance of a particular class in this neighborhood 
[220]. Given the ease of implementation of the model, it 
has been applied in the classification of multiple PQDs 
and voltage sags [55, 65, 102, 114, 171]. Simplicity of 
the method has been the main motivation for applica-
tion of k-NN in PQD detection and classification. How-
ever, it has been mainly used in combination with other 
methods because of its reported drawbacks such as the 
reduced accuracy and high sensitivity to the constant k. 
For instance, in [185], k-NN is used as a weak classifier in 
an ensemble model in combination with decision trees.

5.7.8  Fuzzy logic
Fuzzy logic approaches are based on the sound theo-
retical foundations of fuzzy sets [221]. The basic idea of 
fuzzy logic lies in the definition of true fuzzy logic val-
ues of variables between 0 and 1. Fuzzy logic allows a 
closer representation of human reasoning where the 
information usually has a level of uncertainty. In some 
applications of PQD detection and classification, data for 
training have high uncertainties and thus, in those cases, 
fuzzy logic represents an alternative approach. For auto-
matic classification of PQDs, fuzzy logic has been used 
from the beginning of research on the topic. Some exam-
ples include [43, 48, 61, 132]. FES have also been imple-
mented [67, 189], as well as extended fuzzy reasoning 
[45], and fuzzy C-means [54, 68, 96, 120].

5.7.9  Quantitative analysis of classification techniques
Figure 12 presents a quantitative analysis of the selected 
literature according to the classification techniques 
described above. In Fig.  12a, the absolute number of 
individual appearances of each technique is shown, i.e., 
the number of papers where only one technique (or set 
of techniques in the same category) is used for classifi-
cation. It also presents the number of appearances of 
the techniques in combination with others and the total 
number of papers where classification is achieved with 
a combination of techniques from different categories. 
As seen, shallow ANNs are the most popular models in 
the reviewed literature, followed by decision trees, SVM, 
deep ANN, fuzzy logic, probabilistic and handcrafted 
method, and k-NN. Also, a significant number of pub-
lications (19) implement combined methods for clas-
sification. The number of papers that do not perform 
classification is 46, and hence, a total of 133 papers are 
categorized in techniques for the classification of PQDs.

Figure  12b shows the corresponding percentages of 
classification techniques according to the individual 
appearances. The distribution of combined techniques 
is also reported in absolute values. In this case, shal-
low ANNs are the most popular in combinations. For 
instance, shallow ANNs are used in combination with 
decision trees, SVM, fuzzy logic, probabilistic meth-
ods, and k-NN. Moreover, some methods include the 
combination of three and four types of classification 
approaches.

A report on the distribution of classification tech-
niques from different perspectives is included in Fig. 12. 
Figure  12c shows the distribution of techniques in time 
divided into the periods defined for the categoriza-
tion of papers, i.e., ≤ 2005, 2006–2010, 2011–2015, and 
2016–2021. This indicates the absolute value of indi-
vidual appearances of techniques in each period and the 
corresponding percentage. For instance, shallow ANNs 
present an increasing trend, where most of the papers 
were published in the period from 2016 to 2021. Similar 
behavior is also observed in decision trees with a more 
pronounced trend. An apparent observation is that all 
deep ANN approaches had been published in the last 
period, in agreement with the proliferation of deep learn-
ing. The combination of techniques exhibits a constantly 
increasing trend. Conversely, the use of probabilistic and 
fuzzy logic methods has been decreasing.

Figure 12d shows the distribution of papers according 
to the type of PQD, i.e., multiple PQDs, voltage sags, and 
voltage notches. Most papers performing classification 
are in the category of multiple PQDs as expected because 
the types of PQDs are distinguished in these cases. Clas-
sification is also used for voltage sags as they can be cat-
egorized according to the root causes. No categories are 
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identified for voltage notches; therefore, classification is 
incipient in this case. It is also observed that deep ANN 
models are evenly used for multiple PQDs and voltage 
sag classification.

In Fig. 12e, the distribution of techniques according to 
the real-time application is presented. For instance, deci-
sion trees are more used in real-time approaches, which 
is attributable to the simple operation of algorithms. Sim-
ilarly, the combination of techniques is mostly used for 
real-time applications, where the methods take advan-
tage of each technique in terms of efficiency. Conversely, 
deep ANNs, fuzzy logic, and probabilistic methods are 
less used for real-time applications because of the cost of 
computation during the operation of algorithms.

5.8  Characterization
The characterization of single PQDs refers to the quanti-
fication of features that distinguish the disturbance. The 

single-PQD characterization referred to in this section 
usually differs from the characterization conducted in the 
stages described previously. The feature extraction stage 
presented in Sect. 5.4 explains methods to obtain statisti-
cal, time-series, spectral, and image-based characteristics 
that are useful as inputs for the classification techniques 
to identify the category of PQD. However, these charac-
teristics are not necessarily representative of the physi-
cal features that describe the phenomena according to 
deviations and standard limits. For instance, in [168], the 
extracted features include the mean, variance, kurtosis, 
skewness, entropy, etc. of the coefficients from the WT 
to classify voltage sags according to their causes. Thereby, 
these features are not explicitly related to magnitude, 
duration, POW characteristics, and phase angle jump, 
which are the physical features that identify voltage sags. 
The abovementioned difference occurs because the pur-
pose of feature extraction is to obtain characteristics that 
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allow the most accurate and efficient results in the classi-
fication stage. Conversely, in the single-PQD characteri-
zation referred to in this section, which is mainly useful 
for assessing the severity and impact of the disturbance, 
the physical representation and interpretation of the phe-
nomena is the most important aspect.

This review gives a particular focus to voltage sags and 
notches. Hence, only the aspects observed in the selected 
literature related to their characterization are briefly 
described in the following sections.

Table 12 summarizes the parameters used to character-
ize voltage sags and notches. A brief definition of each 
parameter is provided, and its relevance is highlighted. 
References of the selected literature that analyze each 
of the parameters are also indicated, as well as the usage 
percentage.

5.8.1  Voltage sag characterization
A voltage sag is a decrease in the RMS voltage to between 
0.1 and 0.9 pu lasting from 0.5 cycle to 1 min [5]. Volt-
age sag characterization is useful in assessing equipment 
sensitivity. For instance, sag magnitude is the main factor 
that determines if a piece of equipment will malfunction 
or stop working. Moreover, sag duration is important to 
establish the impact on industrial processes. Thus, for 
voltage sags lasting longer, the probability that industrial 
processes stop is higher. Other voltage sag characteris-
tics including POW of initiation/ending and phase angle 
jump may affect the performance of power electronic 
equipment that uses phase angle information [6]. In the 
literature, single-event characteristics including magni-
tude and duration of sags have been widely addressed. 
However, POW characteristics and phase angle jump still 
require further research to be more accurately computed 
and to better determine the impact on equipment.

Approaches to characterizing voltage sags usually 
include the analysis of time domain waveforms and pro-
files (RMS value), or the analysis of ellipse parameters 
obtained by using the SPM, e.g., [140, 151–153, 157, 163, 
172]. Interest in multistage characterization is emerg-
ing [157, 174], as the usual single-event characteristics 
may not be enough to describe voltage sag events in real 
conditions.

5.8.2  Voltage notch characterization
Voltage notches are sub-cycle waveform distortions 
characterized by a periodic voltage reduction lasting less 
than half a cycle. Notches may be caused by the normal 
operation of power electronic converters when current is 
commutated from one phase to another leading to short-
duration overcurrent [5]. A voltage notch is defined by 
its depth, width, and area [12]. Moreover, the number 
of voltage notches occurring per cycle or half-cycle is an 

important feature in suitably assessing the aggregated 
impact of the disturbance. The number of notches also 
allows for identification of the type of converter causing 
the disturbance.

According to the analyzed literature, width is usually 
obtained in the process of voltage notch characteriza-
tion. However, depth and area have been less studied. The 
number of notches per cycle can be extracted from vari-
ous methodologies in the literature, but it is not explic-
itly performed. In general, the literature related to voltage 
notches is still incipient and there is a lack of research on 
the characterization of the phenomena to analyze, for 
instance, severity and impact on end-user equipment.

6  Discussion
The discussion is organized into remarks on the meth-
odology for the review and the bibliometric analysis, and 
the development of the literature review throughout the 
stages for detection and classification of PQDs described 
in Fig.  7 i.e., input space, preprocessing, feature engi-
neering, and decision space. Detailed technical aspects 
related to these stages are also presented, analyzed, and 
discussed.

6.1  Methodology for the review and bibliometric analysis
6.1.1  Methodology for the literature review
The methodology proposed in Sect. 3 to find the relevant 
literature is reproducible and scalable. However, a sig-
nificant effort is required to retrieve and structure the 
bibliographic metadata to conduct the process. In this 
context, a gap in the process is observed and a possible 
improvement of the methodology lies in a higher level 
of automatization in data retrieval and cleaning. In addi-
tion, the indices formulated in the scoring equation (see 
Sect. 3.2—Scoring equation) to facilitate the selection of 
the most relevant literature are subject to improvement. 
Especially, the title and abstract similarity indices may 
be enhanced using more advanced language processing 
techniques.

6.1.2  Bibliometric analysis
The bibliometric analysis has revealed the increasing 
trend in publications related to the detection and clas-
sification of PQDs. Likewise, publications including 
real-time aspects are also increasing, but with a more 
conservative trend. Thereby, the need for more research 
on real-time aspects is highlighted. Data of origin of pub-
lications indicated that most of the research on the topic 
(more than 50% of publications) is performed in China, 
India, and the USA. This situation suggests that higher 
efforts in researching the topic should be performed 
worldwide because the context of power systems var-
ies from region to region. Distribution on general topics 
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indicates that real-time aspects are more related to moni-
toring and detection, and offline applications are more 
common in the characterization, assessment, and clas-
sification of PQDs. Looking at the type of disturbance, 
general-purpose approaches (multiple PQDs) and tools 
focused on voltage sags have extensive literature and are 
very mature. By contrast, research on voltage notches is 
still incipient. Additional quantitative analyses have been 
presented for the main steps in the process of real-time 
detection and classification of PQDs, i.e., transformation 
and classification. The results of these analyses indicate 
the most widely used techniques.

6.2  Input space and preprocessing
6.2.1  Input data preparation
The most popular techniques for the input space are the 
equation-and simulation-based signals. In the case of 
laboratory and field measurements, the signal acquisi-
tion is mainly carried out using DSP, FPGA, microcon-
trollers, and computers. Real-time digital simulators are 
a new trend in PQDs simulation. More research should 
be performed on the use of laboratory and field measure-
ments for the assessment of tools for real-time detection 
and classification of PQDs, to deal with the uncertainties 
associated with real conditions.

6.2.2  Data preprocessing
Segmentation and normalization are usually applied 
for preprocessing of multiple PQDs and voltage sags. 
In addition, denoising/filtering is mostly applied to spe-
cific disturbances such as voltage notches. No extensive 
details regarding data validation to ensure reliability of 
data from field measurements have been found in the lit-
erature on PQD detection and classification. Therefore, 
further analysis of data validation in the context of PQD 
detection and classification may be useful.

6.3  Feature engineering
6.3.1  Transformation
Time–frequency and time-domain techniques are the 
two most popular for the transformation of PQDs in gen-
eral, and voltage sags and notches. The techniques widely 
used in time–frequency domain are WT, ST, and HHT, 
or their combination with other techniques. The most 
used non-parametric transformation techniques in the 
time domain are SPM, PSR, and TT, whilst the most used 
parametric transformation techniques are KF (especially 
for voltage sags) and AF (e.g., adaptive linear network). 
There are still opportunities to apply real-time oriented 
transformation techniques to perform detection, classifi-
cation, and characterization of specific disturbances such 
as voltage sags and notches using non-parametric tech-
niques such as SPM, PSR, and MM, as well as parametric 

techniques such as Extended KF (non-linear filtering) 
and AF.

6.3.2  Feature extraction
The feature extraction stage is mostly performed using 
statistical and time series techniques. The mean value is 
the clear dominant statistical metric for central tendency, 
whilst statistical dispersion is usually measured through 
standard deviation, maximum/minimum value, and 
statistical values such as variance and HOS (skewness, 
kurtosis, etc.). On time series techniques, cycle-based 
indices as coefficients of energy (especially for voltage 
notches), RMS values, and Shannon entropy are the most 
common, whereas the most popular sample-based indi-
ces are absolute/maximum and event duration for mul-
tiple PQDs and voltage sags, and derivative as well as 
Euclidean distance specifically for voltage notches. The 
latter might be potentially useful for the assessment of 
sub-cycle disturbances (e.g., notches, transients).

6.3.3  Feature selection
The step of feature selection is only involved in design-
ing the tools for detection and classification of PQDs but 
not in the operation. Thereby, the computation times for 
selecting the optimal set of features for specific appli-
cations is a process before the real-time operation. An 
adequate selection of features allows an enhanced oper-
ational efficiency and accuracy. Most approaches in the 
literature for feature selection are handcrafted based on 
expert and widely accepted knowledge, with the advan-
tage of obtaining a better physical interpretation of the 
phenomena. However, handcrafted feature selection can 
be a time-consuming process. Optimization methods 
have also been used to provide enhanced results but usu-
ally become complicated when selecting a suitable set of 
features. Finally, dimensionality reduction approaches 
have shown promising results in the feature selection 
process providing a good compromise between simplicity 
of implementation and accuracy and efficiency of results. 
More effort should be expended on the automatization 
of dimensionality reduction techniques and the proper 
physical interpretation of the selected features.

6.4  Decision space
6.4.1  Detection
As a prior step in the process of classifying PQDs, detec-
tion may be essential in real-time operation because its 
independent implementation allows for improving effi-
ciency and general performance. To that end, the algo-
rithms for the detection of states different from the ideal 
conditions of voltage waveforms are performed con-
stantly in a simple process in real-time. If a PQD is subse-
quently detected, a more complex process of classification 
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is activated, thus reducing the computational burden of 
embedded systems. The abovementioned approach has 
not been extensively implemented and analyzed in the 
literature while such approach is likely to provide prom-
ising results for the implementation of PQD monitoring 
systems. Furthermore, in the case of voltage sags, detec-
tion is useful for applications such as the suitable opera-
tion of DVR and protection systems. In those cases, some 
characterization of the disturbance is necessary.

6.4.2  Classification
Techniques for automatic classification of PQDs have 
been widely studied in the literature, mainly focused 
on the categorization of multiple PQDs (sags, swells, 
notches, transients, harmonics, flicker, etc.). Other 
advances are in the classification of complex (combined) 
PQDs, the classification according to root causes, and 
real-time applications. According to the review, the latter 
two topics still require further research. The most popu-
lar technique for classification is shallow ANNs because 
of their flexibility in learning any pattern from any set 
of features. However, ANNs require extensive data and 
computational effort for training. Decision trees have 
also been extensively used for classification because of 
their simplicity, being proper for real-time applications. 
Recently, deep learning techniques are gaining inter-
est because of the high level of automatization (feature 
extraction is performed automatically as a process within 
the technique). However, in these approaches, the physi-
cal interpretation of features is lost. Moreover, great 
potential is observed in the use of unsupervised learning 
techniques because they have not been yet extensively 
studied in the context of PQD classification.

6.4.3  Characterization
Single PQD characterization results in the physical inter-
pretation of the phenomena and provides relevant infor-
mation for the assessment of severity and impact on 
end-user equipment. Therefore, characterization is use-
ful for analyzing disturbances from the electromagnetic 
compatibility perspective. Characterization of voltage 
sags has been widely addressed concerning magnitude 
and duration. However, POW characteristics and phase 
angle jump that impact on power electronic equipment 
still require further research. Multistage sag characteri-
zation is of emerging interest because of its occurrence 
in real conditions and needs further work. Voltage notch 
characterization is still incipient, especially regarding 
severity assessment. For instance, the definition of notch 
depth is ambiguous in the literature. Moreover, the anal-
ysis of notching ringing as described in [5] has not yet 
been addressed in the literature and the characterization 

of voltage notches may be much more challenging in this 
context.

6.5  Discussion of technical aspects
Technical issues associated with the steps for PQD detec-
tion and classification are discussed. The main techni-
cal issue related to input space and data preprocessing 
is associated to modeling of uncertainties occurring in 
field measurements. This requires applying data analy-
sis techniques including data plausibility, data cleansing, 
statistical inference, etc. In the feature engineering stage, 
the real-time application of processing techniques is still 
challenging because of computation times in the most 
widely applied time–frequency-domain transforms such 
as WT and ST. Although promising results are obtained 
in the real-time application of time-domain transforms 
such as SPM, the challenge is the accurate representa-
tion of the phenomena and the analysis of single-phase 
voltages and currents. Feature selection using optimi-
zation methods is still challenging while the improve-
ment in accuracy is limited. Therefore, a proper trade-off 
between complexity and accuracy should be considered 
in such cases. In the decision space, a challenging techni-
cal issue is the formulation of a comprehensive method 
considering all steps in the decision space, i.e., detection, 
classification, and characterization that may be useful for 
real-time applications, e.g., the analysis of PQD propaga-
tion to identify and localize root causes, the operation of 
protection systems, and the automatic implementation of 
mitigation measures.

7  Perspectives for future research
On transformation techniques, the research trend shows 
that time-domain and combinations of techniques from 
different domains are becoming relevant in PQD detec-
tion and classification in general. The trend also shows 
that research is towards the application of one transfor-
mation technique, or a combination of several, that can 
accurately detect the highest number of PQ variations 
and events rather than specific methodologies for spe-
cific disturbances.

WT, ST, and time-domain techniques (non-paramet-
ric techniques such as SPM, SPR and MM, as well as 
parametric techniques such as extended KF and AF) 
seem to have potential for real-time detection and clas-
sification of either PQDs in general (multiple) or the 
specific (e.g., voltage sags and notches). These tech-
niques, among other characteristics, are flexible in 
detecting different PQDs and can be used in devices 
with restricted computational resources. Nevertheless, 
it is also acknowledged that the combination of differ-
ent state-of-the-art techniques can also be of benefit for 
the detection and classification of PQDs. Opportunities 
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for future research also exist in real-time detection, 
classification, characterization, and possibly in feature 
aggregation of sub-cycle disturbances, such as voltage 
notches and transients.

The use of powerful image classification techniques 
after the 2D transformation of signals is also a promis-
ing field of research. This approach allows the use of tools 
from the ever-increasing potential of the image process-
ing and classification field, e.g., the attention mechanism 
to improve classification accuracy and transfer learning 
to reuse pre-trained models [167]. Also, a 2D transfor-
mation of signals allows the use of deep learning tools 
such as CNN. Alternatively, the use of simpler and robust 
techniques to analyze 2D figures in the complex plane 
such as Fourier descriptors may provide satisfactory 
results in classification accuracy and efficiency. Among 
the 2D transformations, SPM and PSR have shown good 
characterization capabilities and performance for real-
time applications.

In the classification of multiple PQDs and voltage sags, 
CNN have shown promising results in recent studies 
[121, 158, 179]. The potential of CNN lies in its ability 
to automatically extract the best set of features to obtain 
very accurate results in the classification of PQDs, even 
in noisy environments. However, CNN have some draw-
backs such as the high computational requirement in 
training and large number of model parameters that hin-
der real-time application and implementation in embed-
ded systems because of the required additional storage. 
Moreover, the physical interpretation of features is lost 
because the automatic extraction is performed within the 
CNN. A combination of CNN with other techniques may 
help to overcome the drawbacks. For instance, the few-
shot learning technique [171], can be used to reduce the 
high computational and large dataset requirements for 
training. Alternatively, ELM is gaining popularity [108, 
176], because of its simple operation, sufficiently accurate 
results, and requirement of fewer training data. The effi-
ciency of ELM also facilitates real-time application.

In the context of the ongoing digitalization of the 
power system and smart grid paradigm, real-time detec-
tion and classification of PQDs play an important role. 
By online identification of PQDs, a rapid pinpoint of 
the root-causes can be achieved, and prompt automatic 
mitigation measures can be implemented to reduce nega-
tive technical and economic impacts, e.g., fault location 
and clearance, flicker source location and mitigation, 
harmonic resonance source location and mitigation, 
etc. For this purpose, large amounts of data provided by 
advanced metering infrastructures, i.e., smart meters, PQ 
monitors, phasor measurement units, etc., would require 
advanced algorithms to perform real-time detection and 
classification of PQDs.

Specific research on voltage sags also offers areas for 
contribution. For instance, methodologies for voltage 
sag classification and characterization have focused on 
single-or three-phase voltages but, to the extent of this 
review, there is no comprehensive method to automati-
cally classify and characterize single-and three-phase 
voltage sags. Some approaches have addressed voltage 
sag root cause location (upstream or downstream), but a 
more precise location (pinpoint) of sag origin should be 
achieved. This could be useful for the operation of pro-
tection systems and mitigation measures. Also, a more 
accurate real-time characterization of POW features and 
phase angle jump can be achieved. The characterization 
of multistage voltage sags is also of emerging interest 
because of their common occurrence in real conditions 
and the limitations of single event voltage sag characteri-
zation. Progress in this direction has been made in [157] 
and [174] using SPM and the multidimensional charac-
terization, respectively, but more studies are still required 
to improve real-time performance.

Regarding the lack of research in voltage notches, there 
are several opportunities for further work. For instance, 
more accurate tools for detecting and characterizing 
notches are required, including the calculation of sin-
gle PQD features such as depth, width, area, number of 
notches, and other indices to assess severity and impact 
on end-user equipment. Furthermore, automatic classifi-
cation of voltage notches has not been addressed in the 
literature. Some categories can be identified such as nor-
mal notching and notching ringing [5], while the catego-
rization would allow a better understanding of the notch 
PQD and an improved severity and impact assessment.

Only supervised learning techniques have been ana-
lyzed in this review for the AI-based classification of 
PQDs. However, unsupervised techniques could be 
useful in PQD detection and classification because no 
labeled data is required. This can facilitate the process 
of training algorithms. Furthermore, unsupervised and 
supervised learning algorithms can be used together to 
exploit the potential of both approaches. For instance, 
simple unsupervised learning algorithms can be used to 
detect states different from the ideal voltage signal, and 
then more complex supervised learning algorithms can 
be used for classification. This approach can enhance effi-
ciency for real-time application.

8  Conclusion
The comprehensive and systematic review conducted in 
this paper initially develops a methodology to identify 
the most relevant articles in the detection and classifi-
cation of PQDs. This methodology results in a scalable 
and reproducible process that contributed to proposed 
indices to assess publications in terms of topic similarity 
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and quality of research. The narrow set of publications 
selected through the systematic process allows a compre-
hensive overview of the real-time detection and classifi-
cation of PQDs.

The bibliometric analysis of the literature metadata 
demonstrates the increasing interest in PQD detection 
and classification. It also presents top publishing coun-
tries and researchers, and first quantitative insight into 
the relation of general topics, e.g., monitoring, detec-
tion, classification, and characterization with real-time 
applications. The need for further research in real-time 
approaches for PQD detection and classification is 
highlighted.

A comprehensive descriptive, qualitative, and quan-
titative review is performed throughout the stages for 
real-time detection and classification of PQDs, where 
techniques dealing with PQDs in general (multiple 
PQDs) or with specific (e.g., voltage sags and notches) are 
identified and described. The most relevant findings are 
summarized in taxonomy figures and tables. Also, more 
detailed quantitative analyses are provided for the most 
widely explored stages in the literature, i.e., transforma-
tion and classification.

The main remarks arising from the literature review are 
that transformation and classification techniques have 
been widely addressed and are very mature for offline 
applications. However, real-time applications still require 
more research to find efficient and accurate tools for 
real conditions in actual power systems. The computa-
tional burden is an essential aspect in this context, where 
embedded systems have limited resources. The proper 
integration of stages, e.g., preprocessing and feature engi-
neering, and the development of new techniques can 
facilitate real-time applications.

Research gaps in voltage sags are addressed, including 
combined single-and three-phase analysis, sag root cause 
location, accurate and multistage sag characterization. 
Similarly, research gaps in voltage notches include accu-
rate and unambiguous characterization and classification 
for severity and impact assessment.
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