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Abstract 

The electric distribution system (EDS) is prone to faults leading to power interruptions. The present energy market 
demands that electricity utilities invest more in different measures to improve the performance of the EDS. The 
approach proposed here details a composite dual-phased methodology to improve the reliability and efficiency 
of the power delivered by the EDS. In the first phase, the optimal allocation of auto-reclosers (AR) is undertaken by 
employing a newly formulated algorithm. The determination of the total number and location for AR placement is 
based on the economic analysis of two factors, i.e., AR investment-maintenance cost and total benefit earned in terms 
of reliability improvement due to AR placement. The analysis also takes into account the impact of power outages on 
different load types, the load growth rate, and the inflation rate. Further, to enhance the efficiency of the AR-incorpo-
rated EDS, the technique of Radial Distribution System Remodelling is employed in the second phase. This method 
searches for a radial configuration that delivers power at minimum line losses. These phases comprising complex 
combinatorial operations are aided by a fresh hybrid of the Sine Cosine Algorithm, Krill Herd Algorithm, and a genetic 
operator of Differential Evolution. The results obtained from its application on the IEEE 69-bus distribution test system 
prove the credibility of the suggested formulation.

Keywords:  Auto-recloser placement, Load flow, Metaheuristic optimization algorithm, Power loss minimization, 
Reconfiguration, Reliability assessment

1  Introduction
The push for rapid modernisation of the power sector 
has amplified the need for reliability and efficiency to be 
the critical benchmarks of a healthy Electric Distribution 
System (EDS). However, nearly 80% of the total power 
outages occur because of failures in the distribution of 
power to the end customers. This adversely affects the 
reliability and efficiency of the EDS [1]. Power from the 
EDS is supplied to the customers through Electric Util-
ity Companies (EUC). Depending on the quality and 

quantity of power delivered to the customers during a 
time period, the EUC may generate profits or incur losses 
because of penalties [1, 2]. Therefore, maintaining the 
efficiency and reliability of the power provided by an EDS 
is of utmost importance to the EUC. Several approaches 
have been adopted by the EUC to deal with these con-
cerns, such as network remodelling, placement of protec-
tive devices, etc.

Radial Distribution System Remodelling (DSRM) is a 
well-recognized tool that is often used by EUC. In DSRM, 
the sequential power flow arrangement through buses 
in an EDS is altered by varying the closed/open states 
of its sectionalizing and tie switches in such a way that 
all the buses are energized without forming any loops in 
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the network [3]. By applying DSRM in an EDS several 
objectives can be fulfilled, such as reduction of system 
losses [3, 4], thereby improving system loading capability, 
enhancing voltage level at each bus [5], improving sys-
tem reliability [6], delaying system expansion by using the 
available infrastructural facilities in the most efficient and 
optimum arrangement, and mitigating Total Harmonic 
Distortion [7].

DSRM is a non-linear non-differentiable optimization 
problem comprising of extremely complicated combi-
native operations. To solve DSRM, several metaheuris-
tics optimization algorithms have been explored and 
presented in the literature, e.g., Ant Colony System 
[8], Adaptive Particle Swarm Optimization [9], Quan-
tam Firefly Algorithm [10], Fireworks Algorithm [11], 
Enhanced Genetic Algorithm [12], Genetic Algorithm 
[13], etc. Application of metaheuristic techniques on 
power system problems is easy and convenient compared 
to classical numerical methods, because the conversion 
of problem equations according to the optimization sim-
ulation model is not required. Heuristic methods such as 
those formulated in [2, 14] have also been employed to 
analyse DSRM.

Protective switchgears such as auto-reclosers (AR), 
automatic sectionalizers, fuses, etc. are installed in 
an EDS to reduce the number of customers affected 
by power interruptions. These devices are capable of 
promptly detecting and isolating the fault-affected sec-
tions after which power flow is re-established to the 
healthy network [15, 16]. It is realized that optimally 
placing these protective devices in EDS can improve 
the reliability of the networks considerably. In [15–17], 
methodologies capable of recognizing the type, loca-
tion, and number of protective devices such as AR, fuses 
and switches, and the coordination among them are 
proposed. The task of optimal allocation of automatic 
switches in pre-routed radially distributed networks is 
exhibited in [18–20], while a solution approach with 
simultaneous placement of wind turbine/switches and 
system remodelling using a Modified ABC optimization 
algorithm is given in [21]. A value-based planning analy-
sis for finding the optimal number and location of auto-
matic sectionalizers is introduced in [1], whereas in [22], 
a methodology is implemented for reliability improve-
ment by optimal placement of AR. In addition, factors 
such as equipment damage reduction and risk of tripping 
due to heavy loading are also considered. An approach to 
find the optimal locations of AR using the cross-entropy 
method and the Monte Carlo method is presented in [23], 
where the objectives considered are reliability enhance-
ment, minimization of the costs, and the occurrence of 
voltage sags. Reference [24] puts forward a combined 
process of an analytical method and PSO algorithm to 

determine the number and location of AR and switches, 
such that the reliability of the system can be enhanced. 
A complete placement procedure of circuit breakers and 
switches to improve reliability is provided in [25], while 
in [26], the AR placement problem considering the effect 
of manoeuvre points is proposed. Reference [27] presents 
a dual method where both reconfigurations of the distri-
bution system and auto-recloser placement are consid-
ered such that the efficiency, as well as reliability of the 
system, are improved.

1.1 � Contribution of the paper
Although a lot of research has been done on the place-
ment problem of automatic switches in an EDS, only lim-
ited studies have been done on the optimal placement of 
AR.

The scope of solving the optimal allocation of AR in 
an EDS as a remedy for improving system reliability acts 
as a motivation to take up this task. Furthermore, it is 
observed that there is a void in the literature where the 
efficiency quotient of the AR-installed EDS is investi-
gated and provisions for its enhancement are undertaken. 
So a new composite methodology is formulated in this 
paper to improve the reliability and efficiency of an EDS.

The proposed methodology has two phases:
In Phase I, the optimal number and location for ARs are 

detected with the aid of a newly formulated AR allocating 
algorithm and a cost–benefit analysis. The cost–benefit 
analysis considers the investment cost, maintenance cost, 
load growth rate, inflation rate, cost of unsupplied energy 
to various types of customers (viz. residential, commer-
cial, industrial customers), and the profit earned by the 
EUC that is due to AR installation in the system. Such 
analysis also considers the Cumulative Present Value of 
the maintenance cost and the profit earned by the EUC 
for the complete working lifespan of the installed ARs. By 
doing so these finances are reflected in the first year of 
the AR allocation by the EUC. Thus, based on the total 
prospective expenditure and benefits, the optimal num-
ber and location for AR placement can be identified.

In Phase II, the AR-incorporated EDS (as obtained in 
phase I) is remodelled in such a fashion that the overall 
system line losses are reduced, while keeping all the sys-
tem nodes energized in a radial configuration and with-
out disturbing the coordination among the installed ARs.

To tackle the combinatorial processes presented in 
both phases, a novel hybrid meta-heuristic optimization 
technique named Mutated Krill Herd Sine Cosine Algo-
rithm (µ-KHSC) is used. The proposed framework is 
applied to the IEEE 69-bus radial distribution test system 
to validate its potential.
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The remainder of the paper is organized as follows: The 
major aspects of reliability evaluation are discussed in 
Sect. 2, and Sect. 3 describes the suggested approach in 
detail. Section 4 focuses on the development of the new 
hybrid algorithm, while numerical findings are reported 
in Sect. 5. Finally, Sect. 6 concludes the paper by show-
casing its contributions.

2 � Reliability assessment of a radial distribution 
system

“The ability of a component or system to perform 
required functions under stated conditions for a stated 
period of time”, is termed reliability [2]. There are three 
fundamental indices employed to analyse the reliability of 
a system, i.e., frequency of failure in a year ( � ), average 
downtime per failure ( δ ) and outage duration per annum 
( γ ) [2]. The average downtime per failure δj , due to faults 
in the jth branch is of two types:

•	 δpj is the mean time needed to isolate and repair the 
faulty branch j.

•	 δtj is the mean time needed to disconnect the faulty 
branch j from the healthy network by turning off its 
sectionalising switches.

The interruptions caused by failures result in decreas-
ing the reliability of a system. Interruptions can broadly 
be classified as momentary and sustained. Momentary 
interruptions are those power outages which last for less 
than five minutes, whereas outages which exist for more 
than five minutes are referred to as sustained interrup-
tions [28].

Placement of automation-enabled protective devices, 
such as auto-reclosers, helps mitigate the total number of 
loads affected by the failures. Such impact of AR place-
ment is described below with the help of a dummy net-
work shown in Fig. 1.

Referring to Fig. 1a, when a fault occurs at B4, on sens-
ing the fault, the circuit breaker CR at the feeder node 
trips the circuit causing power interruption in the whole 
network. The EUC fault repair team then detects the 

failure point and opens the sectionalizing switch of that 
faulty branch for further repair actions. Eventually, CR 
is closed and power is restored to the remaining healthy 
network.

Thus, the power interruption duration for each of the 
loads connected to nodes 2, 3, 4, and 7 is equal to the 
detection and isolation of the faulty branch B4 by switch-
ing action. However, the loads at nodes 5 and 6 lying 
downstream of the failure point suffer an interruption 
equal to the duration required for the fault to be repaired 
and reconnected to the system.

The durations of power interruptions caused at each 
load node due to fault at B4 are listed in Table 1.

In Table 1, �B4 is the frequency of occurrence of failure 
events at branch segment B4, δtB4 is the average switch-
ing time of the sectionalizing switch at B4, and δpB4 is the 
average repair time needed for any repair action at B4.

In Fig.  1b, an AR is assumed to be allocated at the 
branch segment B3. The effect of a similar scenario of 
fault occurrence at B4 is analyzed. When a sustained 
fault occurs at B4, on sensing the fault, the AR auto-
matically trips the circuit before CR detects the fault. 
By doing so, the loads connected at nodes 2, 3, and 7 are 
protected from the power outage that had occurred in 
the previous case. The load at node 4 faces an interrup-
tion for the switching period required to disconnect the 
faulty branch B4, whereas the loads at node 5 and 6 lying 
downstream of the faulty branch are disconnected from 
the power supply until the fault is completely repaired 
and B4 is connected back to the live network.

The nodal power interruptions due to a fault at B4 in 
the presence of AR are summarized in Table 2.

The significance of the presence of AR in reducing 
power interruption duration to a great extent is mani-
fested by the analysis as displayed in Tables 1 and 2.

Although AR inclusion in the system improves reliabil-
ity by mitigating power outages, this comes at the cost 
of a large expenditure from the EUC side in the form of 
the AR investment and maintenance costs. So practi-
cally it is infeasible to install ARs in large numbers for the 

Fig. 1  Single line diagram of a seven-node system

Table 1  Power interruptions caused by a fault at B4 based on 
Fig. 1a

Load nodes Interruption duration 
per year due to the faults 
at B4

Load nodes lying 
upstream to the faulty 
branch, B4

2, 3, 4, 7 �B4.δtB4

Load nodes lying 
downstream to the 
faulty branch, B4

5, 6 �B4.δpB4
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EUC. Thus, EUC often seeks a balanced solution where 
both conditions, i.e., the benefit provided to the custom-
ers by cutting down the power interruptions and AR 
investment-maintenance costs incurred by the EUC, are 
satisfied.

Thus the optimal number and location of AR place-
ment in the system play a vital role for both EUC and the 
customers.

3 � Problem composition
In the proposed schema as illustrated in Fig. 2, a merger 
of two kinds of power system problems of planning and 
operation is addressed. The task of optimum allocation of 
AR to improve system reliability is a planning problem, 
while DSRM is an operational problem and is imple-
mented to minimize system power losses.

3.1 � Phase I: Optimum placement of auto‑reclosers
The presence of AR in a radial EDS can reduce the power 
interruptions caused by failures in the network. Accord-
ingly, their optimum placement plays a significant role in 
enhancing system reliability.

In this study, the number and location for AR installation 
depend on an economic analysis of the prospective expend-
iture and the profit that will be earned because of AR place-
ment in the system. This analysis takes into account the 
load growth, inflation and interest rates, and also the effect 
of the unsupplied energy on different types of loads such as 
industrial, commercial and domestic loads.

The total expenditure ( TE ) on AR installation by an EUC 
is divided into investment cost ( TIC ) and maintenance cost 
( TMC ), as:

The expressions for the total investment cost and total 
maintenance cost are given respectively as:

where ARNM is the total number of AR, ARIC and ARMC 
are the investment cost and maintenance cost of a single 
AR, respectively.

The profit earned by the EUC due to the improvement in 
reliability in one year can be stated as:

where PSE is the profit due to the supplied energy, 
whereas CUENOAR and CUEAR are the costs of the 
unsupplied energy in the absence and presence of AR, 
respectively. Equation  (4) represents the fact that the 
incorporation of AR in an EDS will increase the amount 
of supplied energy to the customers, resulting in a rise in 
revenue earned by the EUC.

The unsupplied energy EENS and the cost of unsupplied 
energy CUE [15] are evaluated respectively as:

where nbus and bn are the total numbers of system load 
nodes and branch segments, respectively. cont is the 
maximum number of contingencies, alpe is the number 

(1)TE = TIC + TMC

(2)TIC = ARNM ∗ ARIC

(3)TMC = ARNM ∗ ARMC

(4)PSE = CUENOAR − CUEAR

(5)EENS =

nbus

a=1

Lda · γa =

nbus

a=1

Lda ·

bn

b=1

�bδb

(6)CUE =

cont
∑

e=1

alpe
∑

f=1

Ldf · �e · Cef (δe)

Table 2  Power interruptions caused by faults at B4 in presence 
of AR placed at B3 based on Fig. 1b

Load 
nodes

Interruption 
duration per 
year due to 
the faults 
at B4

Load nodes lying upstream to AR as well as 
the faulty branch, B4

2, 3, 7 No interrup-
tion

Load node lying downstream to AR but 
upstream to the faulty branch, B4

4 �B4.δtB4

Load nodes lying downstream to the faulty 
branch, B4 as well as AR located at B3

5, 6 �B4.δpB4

Fig. 2  Proposed schema
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of affected load points due to contingency e , Ldf  is the 
total load connected at load point f  , �e is the frequency 
of occurrence of the e th contingency, and Cef (δe) is the 
customer interruption cost obtained using sector cus-
tomer damage functions (SCDFs) [15] as displayed in 
Table  3. SCDF has non-linear representations which 
depend on the type of load affected at the f  th load point 
due to an interruption of duration δe caused due to con-
tingency e.

To consider the overall expenditure and profits that 
will be earned by the EUC for the entire life span of the 
installed ARs, an assessment based on Cumulative Pre-
sent Value (CPV) is performed [1]. CPV converts all the 
future expected expenses and benefits into the first year 
of their operation, which helps in realizing the actual 
impact of the placement of any devices.

The investment of an AR is a single time expendi-
ture, whereas the maintenance and the profit earned 
take place every year over the working lifespan of the 
installed AR. So CPV is applied only on the yearly 
maintenance cost as in (3) and the yearly profit earned 
as in (4). CPV of TMC and PSE are shown as:

In the above equations, IFR , LGR and ITR are the 
inflation, load growth and interest rates, respectively. η 
is the total working life span of an AR.

The objective of this phase is to maximize the total 
expected profit ( TEP ) from installing these protective 
devices in EDS and can be formulated as:

(7)TMCCPV = TMC

(

1− Zη

1− Z

)

(8)PSECPV = PSE

(

1− Zη

1− Z

)

(9)Z =
(1+ IFR)(1+ LGR)

(1+ ITR)

(10)TEP = PSECPV − TMCCPV − TIC .

3.2 � Phase II: Radial distribution system re‑modelling
Radial DSRM is an optimization technique that is often 
applied by an EUC to maintain a network with healthy 
characteristics. Application of DSRM offers possibilities 
to find network configurations where the line current 
magnitudes are lower compared to the base configura-
tion. As the current magnitude reduces, the line resistive 
losses ( I2R losses) also reduce [4], thereby improving the 
efficiency of the overall EDS.

In the DSRM technique used in this study, a linkage 
matrix lkg is formed using the line data and the open/
close status of the sectionalizing and tie switches of the 
radial EDS. The size of the linkage matrix is bn× nbus , 
and the matrix can be populated as:

In (11), the terms − 1 and 1 are used to represent the 
respective sending and receiving end nodes in a particu-
lar branch. As these values are for representation pur-
poses only, they can be replaced during simulation by any 
other values for convenience.

According to the linkage matrix, if a column has mul-
tiple cells with value ‘1’, it corresponds to a loop in the 
system. Such a configuration is neglected considering it 
to be a meshed one. Thus, the linkage matrix identifies a 
radial configuration of the network and ensures the cor-
rect direction of current flow throughout all the remodel-
ling phases.

The DSRM method deploys a Kirchhoff’s formulation 
based on the Sweep Algorithm [29] to analyze the network 
parameters. This load flow method, also known as the 
Backward/Forward sweep method, is based on the direct 
application of Kirchhoff’s voltage and current laws (KVL 
and KCL). The equations involved in the load flow are:

where NCl is the nodal current flowing through the lth 
node, ALDl is the active load of the lth node, RLDl is the 
reactive load of the lth node, and NVl is the nodal voltage 
across the lth node.

where LCk is the line current flowing through the kth 
branch

(11)

lkgpq =

{

−1, when q is sending end node in pth branch
1, when q is receiving end node in pth branch

(12)

NCl =

(

ALDl + jRLDl

NVl

)∗

, l = 1, 2, . . . , nbus

(13)LCk = LCk+1 + NCk+1, k = 1, 2, . . . , bn

(14)
NVm+1 = NVm −

{

LCm × (LRsm + jLRcm)
}

,

m = 1, 2, . . . , bn;

Table 3  Customer interruption cost

Customer type Interruption duration (h) and 
cost (USD/kW)

1 h 4 h

Industrial 9.085 25.16

Commercial 8.552 31.317

Residential 0.482 4.914
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where LRsm and LRcm are the line resistance and reac-
tance of the mth branch, respectively.

Equations  (12) and (13) represent the backward stage 
and Eq. (14) represents the forward stage. This set of equa-
tions is repeated until the convergence criteria are reached.

After the load flow problem has converged, the follow-
ing two equations are used to obtain the total line resis-
tive loss of the system:

where RLn is the line resistive loss of a branch segment 
and RLtotal is the total line resistive loss of the overall 
system.

3.3 � Problem objective
The objective functions to be optimized using the pro-
posed framework are:

where α and β are two single row matrices. α represents 
the set of ARNM number of branches where auto-reclos-
ers are to be installed, while β denotes the open/close sta-
tuses of all the bn number of the sectionalizing switches 
and tn number of the tie switches present in the EDS. In 
the matrix β , the open status of the switches is shown by 
zero and closed is shown by one.

To generate α , a new algorithm is formulated as listed 
in Table 4, which also shows an example that employs the 
new algorithm to generate a set of branches for AR allo-
cation based on the EDS depicted in Fig. 1a.

In Table 4, tp is the total number of power flow paths 
in a radial EDS configuration, pb is the possible set of 
branch segments in every power flow path suitable for 
AR placement. These are carefully selected by study-
ing the given EDS configuration. pb is a matrix with the 
number of rows being tp.

3.4 � Problem constraints

1.	 Radiality constraint: The EDS should be radial in 
nature and have no loops.

2.	 Power continuity constraint: All load nodes in the 
EDS should be connected to the feeder for power 
supply.

(15)RLn = LC2
n · LRsn, n = 1, 2, . . . , bn

(16)RLtotal =

bn
∑

n=1

RLn

(17)Maximize
{

f1(α) = TEP
}

(18)Minimize
{

f2(β) = RLtotal
}

3.	 Nodal voltage boundary constraint [35]:

4.	 Line current boundary constraint [35]:

5.	 Maximum allowable power flow limit constraint [35]:

6.	 Protection devices coordination constraint: To 
prevent miscoordination of the allocated protec-
tive devices, alignment of multiple ARs in the same 
power flow path is prevented.

3.5 � Problem assumptions

1.	 Fault analysis is done only for sustained interruptions 
[30].

2.	 All switches, circuit breakers, ARs are considered to 
be perfectly reliable.

(19)
NVj,min ≤

∣

∣NVj

∣

∣ ≤ NVj,max, j = 1, 2, . . . , nbus

(20)LCi ≤ LCi,max, i = 1, 2, . . . , bn

(21)Sij ≤ Smax
ij ; i �= j; i, j = 1, 2, . . . , nbus

Table 4  Pseudocode for AR allocation and an example of its 
application based on Fig.  1a. The bold words are highlight the 
functionality which is to be taken in each step of the algorithm
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3.	 Only one fault occurs at a time and before its inci-
dence, any earlier fault has been repaired [21].

4.	 All protective devices are in proper coordination 
[21].

5.	 Only peak load is considered in this study.
6.	 The failure rates, line currents and system loads are 

considered to be constant [21].
7.	 A circuit breaker along with an overcurrent relay is 

placed at the substation.

4 � Optimization algorithms used
4.1 � Krill Herd algorithm
The Krill Herd Algorithm (KHA) [31] is a well-established 
optimization technique that mimics the behavior of an 
aquatic species known as Krill, which live in herds. The 
position of each Krill individual ( Z ) represents a possible 
solution when the algorithm is applied to solve a problem. 
The closer the position of the Krill to its food, the better is 
the fitness of the solution ( Fit ). The algorithm is influenced 
by three types of movements each Krill individual per-
forms, i.e., (1) the tendency to be nearer to the herd ( m1 ); 
(2) motion to search food ( m2 ); and (3) arbitrary move-
ment ( m3).

The formulation of the algorithm is presented below.

4.1.1 � The tendency to be nearer to the herd of Krill

where m1max is the highest induced speed, cfbest guides 
the ithKrill towards the global solution, and wi is the inertia 

(22)

m1iteri = m1max(M1+M2)+M3, i = 1, 2, . . . , tki

M1 =





ngb
�

j=1

Fitij · Zij





M2 = (cfbest · Fitibest · Zibest)

M3 = wi ·m1iter−1
i

(23)Fitij =
Fiti − Fitj

Fitworst − Fitbest
, j = 1, 2, . . . , ngb

(24)Zij =
Zi − Zj

∥

∥Zi − Zj

∥

∥+ e

(25)cfbest = 2

(

rand +
iter

itermax

)

(26)snd =
1

5tk





tki
�

j=1

�

�Zi − Zj

�

�





of the induced movement due to the presence of the other 
Krill which lie between 0 and 1. e is a small positive num-
ber, tki is the total number of Krill individuals, ngb is the 
number of neighbors the ith krill has and is determined 
using sensing distance snd given in (26). iter and itermax 
are the present and the maximum number of iterations, 
respectively.

4.1.2 � The motion to search food

where fs is the foraging speed, cfd is the food coefficient 
which tends to decrease gradually, Ziter

fd  is the food posi-
tion at the iterth iteration which is updated with the 
movement of the ith Krill.

4.1.3 � Arbitrary movement

Equation  (30) is designed to ensure a gradual decrease 
in the random movement of each Krill as the number of 
iterations increases. m3max is the highest speed of diffusion 
whereas r is a random vector whose value lies between − 1 
and 1.

The following equations are used to update the location 
of the ith Krill after each iteration:

where tki is the total number of Krill.

where cns is a constant between 0 and 2, tv is the total 
number of variables involved, upk and lwk are the upper 
and lower bounds of thekth variable, respectively.

(27)

m2iteri = fs(F1+ F2)+ F3

F1 =
(

cfd · Fiti,fd · Zi,fd

)

F2 =
(

Fiti,ibest · Zi,ibest

)

F3 = wfd ·m2itr−1
i

(28)cfd = 2

(

1−
iter

itermax

)

(29)Ziter
fd =

∑tki
i=1 Z

iter
i · 1

Fititeri
∑tki

i=1
1

Fititeri

(30)m3iteri = m3max · r ·

(

1−
iter

itermax

)

(31)
dZi

dt
= m1i +m2i +m3i; i = 1, 2, . . . , tki

(32)Ziter
i = Ziter−1

i +
dZi

dt

{

cns

tv
∑

k=1

upk − lwk)

}
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4.2 � Sine cosine algorithm
The Sine Cosine Algorithm (SCA) [32] is a metaheuris-
tic optimization algorithm that brings forward an amal-
gamation of a few trigonometric functions such as sine 
and cosine functions and several other random variables 
to push a problem towards its global solution.

The randomly generated solutions PS are updated 
using the following equation:

Here α,β , δ, σ are random numbers, β lies in [−2, 2] 
whereas α, δ, σ lie in the range [0, 1][0, 1] . Ziter−1

best  is the 
best candidate solution obtained in the (iter − 1)th 
iteration.

4.3 � The mutation operator of differential evolution
Out of the multiple mutation strategies of the Differential 
Algorithm presented in [33], “DE/ran-to-best/1”, is con-
sidered here. This strategy, unlike the others, enhances 
both global and local searches. It introduces a targeted 
approach towards the solution with the highest fitness 
as well as randomness from randomly selected available 
solutions. The strategy is provided below:

where Ziter−1
best  is the solution with the best fitness in the 

iter − 1 th iteration, Ziter
i  is the ith solution in the iter th 

iteration which is being mutated. rd1 and rd2 are two 
exclusive random numbers between 1 and NK  (but 
excluding the value of the index i ). Ziter

i,rd1 and Ziter
i,rd2 are the 

rd1 th and rd2 th solutions respectively from the iter th 
iteration, whereas cfr is a controlling factor.

4.4 � Mutated Krill Herd sine cosine algorithm
The Mutated Krill Herd Sine Cosine algorithm (µ-KHSC) 
is a unification of the above-mentioned algorithms and 
strategy namely, the Krill Herd (KHA) [31], the Sine 
Cosine (SCA) [32], and mutation operator of Differential 
Algorithms [33]. KHA is itself a powerful optimization 
tool but occasionally fails to reproduce the same optimal 
solution at different runs as it gets caught in local optima. 
The merger of SCA and mutation operator of DE render 
µ-KHSCA with a perfect blend of robustness, explora-
tion, and exploitation capabilities.

The flowchart of the µ-KHSC algorithm is demon-
strated in Fig. 3.

(33)

Ziter
i =

Ziter−1
i + α · sin(β) ·

∣

∣

∣
δ · Ziter−1

best − Ziter−1
i

∣

∣

∣
, σ < 0.5

Ziter−1
i + α · cos(β) ·

∣

∣

∣δ · Ziter−1
best − Ziter−1

i

∣

∣

∣, σ ≥ 0.5

(34)

Ziter
i,µ =Ziter

i + cfr ·
(

Ziter−1

best − Ziter
i

)

+ cfr ·
(

Ziter
i,rd1 − Ziter

i,rd2

)

;

i =1, 2, . . . ,NK; iter = 1, 2, . . . , itermax;

4.5 � Application of µ‑KHSC algorithm
The new hybrid algorithm µ-KHSC is applied to the pro-
posed twofold framework. Every candidate solution �Zj 
portrays:

•	 the selected set of AR branch locations α when 
applied in Phase I- Optimal placement of AR where 
the objective is shown in (17).

•	 a radial configuration β that is applied in Phase II- 
DSRM where the objective is clarified by (18).

The fitness of each Krill individual in Phase I and Phase 
II is evaluated using (10) and (16), respectively. Each 
solution is verified in such a way that it adheres to the 
constraints provided in Sect. 3.4. If any solution violates 
any boundary limits, then the solution is fixed to the limit 
which is violated.

To simplify the understanding of the complete optimi-
zation process, a step-by-step approach of Phase I (Opti-
mal placement of AR) of the methodology is provided 
below, where Steps 1 to 4 fall under initialization of the 
optimization process.

1.	 For initialization of a set of solutions, the newly 
developed algorithm as elaborated in Table 4 is rigor-
ously followed. Here each solution represents an EDS 
where AR are assumed to be allocated at the gener-
ated branch locations.

2.	 Reliability analysis, as explained in Sect.  2, is per-
formed on each solution. Using (5) and (6) provided 
in Sect. 3.1, the values of EENS and CUE are calcu-
lated.

3.	 The PSE and the CPV of PSE are obtained using (4), 
(9) and (8).

4.	 Finally, using (2), (3), (9) and (7), the Total Expected 
Profit (TEP) of each solution is calculated using (10).

5.	 The updating procedure of the optimization tech-
nique is followed exactly from the flowchart shown 
in Fig. 3.

6.	 At the end of all iterations, ZglobalBest obtained rep-
resents the best set of branch locations for AR place-
ment which provides TEP of FitglobalBest (as shown in 
Fig. 3).

A similar approach to that discussed above is consid-
ered to solve Phase II (DSRM) of the methodology.

5 � Numerical analysis
The potency of the suggested methodology for the multi-
objective formulation is verified using the IEEE 69-bus 
test system and the results obtained are shown in this 
section.
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Fig. 3  Flowchart of the µ-KHSC algorithm
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The test system as displayed in Fig.  4 comprises 69 
nodes and five tie lines. Each of the 68 branch segments 
consists of normally closed sectionalizing switches and 
each of the five tie lines has normally open tie switches. 
The total active and reactive loads are 3802.19  kW and 
2694.60 kVAr, respectively. The total line resistive loss of 
the base system is 224.9804 kW. It is assumed that there 
is a circuit breaker along with an overcurrent relay placed 
at feeder node 1.

Three types of loads are considered in this study, i.e., 
residential, commercial, and industrial, as given in 
Table 5. The system load data and bus data are obtained 
from [4].

The values considered for some of the necessary 
parameters are:

•	 The average repair time per failure ( δp ) is 4 h.
•	 The average restoration or switching time per failure 

( δt ) is 1 h.
•	 The frequency of failure per km per year ( � ) is 0.0650 

[20].
•	 The load growth ( LGR ), inflation ( IFR ), and interest 

rates ( ITR ) are 5%, 5%, and 8%, respectively [1].
•	 The total working life span of auto-recloser ( η ) is 

20 years.
•	 The investment cost of one AR is $14,000.
•	 The maintenance cost of one AR is 5% of its invest-

ment cost.

•	 The population size and the total number of itera-
tions itermax for µ-KHSC is 25 and 80, respectively.

The complete framework is developed in MATLAB 
R2014a software in a system having 8  GB RAM, with a 
core i5 and 2.30 GHz processor. The cost-related values 
are expressed in US Dollars (USD). The following con-
version equation is utilized to convert USD to Indian 
Rupees(₹):

5.1 � Phase I: Optimal AR allocation
The application of optimal placement of AR in the test 
system to maximize the total expected profit as in (17) 
is carried out in five scenarios where the number of ARs 
to be allocated is varied from one to five. This concept is 
undertaken to ease the selection of the optimum num-
ber of ARs by the EUC based on a compromise solu-
tion where the satisfaction of the customers (through 
improvement in supplied energy), as well as the EUC 
benefits, are taken into account.

Branch segments starting from B3 to B68 of the test 
system, as shown in Fig. 4, are considered suitable can-
didate locations for the AR placement. The locations 
for the placement of ARs are determined using the new 
algorithms explained in Table 4 and Fig. 3.

The results obtained for the five scenarios with varying 
AR numbers are provided in Table 6, which includes the 
unsupplied energy (EENS), the cost of unsupplied energy 
(CUE) as well as the total expected profit for a cumulated 
period of 20  years. It is observed that as the installed 
number of ARs increases, the system reliability in terms 
of supplied energy also improves.

1 USD= ₹ 79.93Fig. 4  The IEEE 69-bus test system

Table 5  Different load types and their locations in terms of load 
s

Load type Load nodes

Residential load 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 20, 22, 24, 26, 27, 28, 
29, 33, 34, 35, 36, 37, 39, 40, 41, 43, 45, 46, 48, 51, 52, 
53, 54, 55, 62, 65, 66, 67, 68, 69

Commercial load 11, 12, 21, 59

Industrial load 49, 50, 61, 64

Table 6  Reliability results obtained for five different scenarios of 
AR placement in the test system using the µ-KHSC algorithm

No. of ARs 
placed

Branch 
segments of 
test case for AR 
allocation

Unsupplied 
energy 
(kWh/year)

Cost of the 
unsupplied 
energy ($/
year)

Total expected 
profit for a 
cumulated 
period of 
20 years ($)

0 Base case – 18,187.2018 107,863.6574 –

1 B10 15,340.7475 87,826.2270 366,227.6767

2 B10, B35 13,530.8143 75,271.4480 673,819.9401

3 B10, B27, B35 12,204.3642 66,287.5338 893,925.9635

4 B10, B27, B35, 
B52

10,971.0276 59,849.3838 1,051,660.7297

5 B10, B27, B35, 
B46, B52

10,452.6971 56,664.7861 1,129,683.4182
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The percentage improvement in the total expected 
profit for all the five cases of AR placement is shown in 
Fig. 5. This pictorial representation in the form of a cyl-
inder bar chart provides the EUC engineers or the deci-
sion-makers with a simple analysing solution to decide 
on the optimum number of ARs to be placed.

From Fig.  5 is it evident that the highest percentage 
improvement in the total expected profit of 83.98% is 
obtained when the number of AR (NOA) placed increases 
from one to two. However, as the NOA increases the 
percentage improvement gradually decreases, and fur-
ther drops to a nominal value of 7.42% when the NOA 
increases from four to five.

Therefore, it is understood that although increasing the 
NOA alleviates system reliability it does not necessarily 
improve the overall expected profit earned by the EUC 
for the working life span of the protective devices.

In this study, based on the analysis provided in Fig.  5, 
a total of four ARs are selected for optimal allocation in 
the test system. The optimal AR placement locations 
which provide a maximum of the total expected profit are 
branch segments B10, B27, B35, and B52. The correspond-
ing unsupplied energy, the cost of unsupplied energy, and 
the total expected profit are provided in Table 6.

To present a comparative study between the µ-KHSC 
algorithm and other optimization techniques, the com-
plete procedure as presented in Fig.  3 is applied to find 
the optimum solution for the placement of four ARs in 
the IEEE 69-bus test system (Fig.  4). The comparative 
study is presented in Table 7.

5.2 � Phase II: Distribution system remodelling
In this phase, the DSRM methodology is applied to the 
AR installed test system as obtained in Phase I. By doing 
so, the efficiency of the test system is improved by reduc-
ing the total line losses as in (18).

The total line resistive losses obtained after applying 
DSRM are shown in Table 8. It is seen there that there is a 
reduction of 56.1349% in the line losses when compared 
to that of the base case of the test system.

A comparison between the simulation results attained 
by µ-KHSC and other optimization techniques for 
minimizing line resistive losses using DSRM is given in 
Table 9. It is noteworthy that µ-KHSC beats all the other 
algorithms. This confirms the superiority of the hybrid 
optimization µ-KHSC algorithm developed in this study.

Figure  6 shows a comparative study of the nodal 
voltages obtained before and after applying DSRM in 
the test system in the form of clustered columns and 
line graph, respectively. It is apparent from Fig.  6 that 

Fig. 5  Percentage improvement in the total expected profit 
considering five scenarios of AR placement

Table 7  Simulation results obtained by the KHA, SCA, and 
µ-KHSC algorithm for the optimal placement of four ARs in the 
IEEE 69-bus test system

Bold numerical values represent the best results obtained using the proposed 
methodology

Optimization 
algorithms

Branch 
segments of 
test case for AR 
allocation

Unsupplied 
energy 
(kWh/year)

Cost of the 
unsupplied 
energy ($/
year)

Total expected 
profit for a 
cumulated 
period of 
20 years ($)

KHA B10, B35, B28, 
B52

11,107.4502 60,825.4557 1,027,746.9539

SCA B10, B53, B27, 
B35

11,077.1059 60,414.2438 1,037,821.6508

µ-KHSC B10, B27, B35, 
B52

10,971.0276 59,849.3838 1,051,660.7297

Table 8  Test system configuration with minimum line resistive 
losses obtained using DSRM and µ-KHSC

Bold numerical values represent the best results obtained using the proposed 
methodology

Configuration (disconnected 
branch segments)

Total line resistive 
losses (in kW)

Increase in 
efficiency of 
power supply

Before DSRM T69, T70, T71, T72, 
T73

224.9804 –

After DSRM B13, B57, B61, T69, T70 98.6877 56.1349%

Table 9  Comparison of the minimum line resistive losses for the 
test system obtained using various optimization algorithms

Bold numerical values represent the best results obtained using the proposed 
methodology

Optimization algorithm Least nodal voltage 
(P.U.)

Line 
resistive 
loss (kW)

Base network 0.9092 224.9804

Hybrid PSO [34] 0.9427 99.6704

Improved GA [35] 0.9428 99.6200

SAMCSA [36] 0.9428 99.6200

KHA 0.9483 99.5997

SCA 0.9483 99.6785

µ-KHSC 0.9494 98.6877



Page 12 of 14Ghosh et al. Protection and Control of Modern Power Systems             (2023) 8:1 

performing DSRM on the test system has significantly 
improved the nodal voltage levels.

The final remodelled configuration of the 69-bus test 
system (where the disconnected branches are B13, B57, 
B61, T69, T70) with four installed auto-reclosers at B10, 
B27, B35, B52 is outlined in Fig.  7. Results shown in 
Table 6 reveal the effectiveness of the DSRM methodology 

using the µ-KHSC optimization technique to reduce the 
system resistive losses. To check if DSRM has any impact 
on the reliability of the system, reliability assessment is 
carried out on the AR installed remodelled test system as 
in Fig. 7, and the results attained are presented in Table 10.

From Table 10 it is observed that the improvement in 
EENS after the remodelling of the AR installed test sys-
tem is much higher compared to that obtained after the 
AR placement in the base test system.

6 � Conclusion
A composite dual-phased approach involving auto-recloser 
placement and Distribution System Remodelling is pro-
posed to improve system reliability and efficiency. To iden-
tify the optimum number and location of auto-reclosers to 
be allocated, a new auto-recloser placement algorithm is 
introduced (Table 4) and a cost–benefit analysis (Sect. 3.1) 
is conducted. This analysis takes into account the effect 
of power outages on various types of customers, the load 
growth rate, and the inflation rate. A new metaheuris-
tic hybrid optimization algorithm, µ-KHSC, is developed 
(Sect. 4.4) and employed in both phases of the methodol-
ogy exploring optimum combinations of branch segments. 
The simulation results (Sect.  5) obtained corroborate the 
efficacy and credibility of the proposed approach. The find-
ings of this paper are summarized below.

•	 A reliability improvement of 39.7% in terms of EENS 
is obtained when four ARs are optimally allocated in 
the 69-bus test system.

•	 The application of DSRM on the AR installed test 
system provides a significant improvement in sys-
tem efficiency by reducing the system line resistive 
losses by 56.1%. Further, it also proves beneficial in 
elevating the system reliability (considering EENS) by 
44.6% when compared to the base case.

•	 The suggested methodology has positive effects on 
the up-grading of nodal voltages within the desired 
limits, as shown in Fig. 6.

•	 The new hybrid optimization algorithm, µ-KHSC, 
outperforms the results obtained by KHA, SCA as 
well as other algorithms present in the literature, 
validating its superiority.

A similar framework used in the paper may be pursued for 
the placement of other protective switchgears such as auto-
matic switches and fuses. The study may also be extended 
for analyzing both momentary and sustained faults.

Abbreviations
EDS: Electric distribution system; AR: Auto-reclosers; EUC: Electric utility com-
panies; DSRM: Radial distribution system re-modelling; µ-KHSC: Mutated Krill 

Fig. 6  Comparison of nodal voltages of the test system obtained 
before and after DSRM using µ-KHSC

Fig. 7  Final remodelled configuration of the 69-bus test system with 
optimally allocated ARs

Table 10  Reliability and line resistive loss evaluation results 
obtained after different phases of the composite methodology

Base test 
system 
without AR

Base test 
system with AR 
placed at B10, 
B27, B35, B52

After DSRM 
without AR

After DSRM 
with AR 
placed at B10, 
B27, B35, B52

EENS (kWh/
year)

18,187.2018 10,971.0276 17,125.6832 10,073.8407

CUE ($/year) 107,863.6574 59,849.3838 101,459.7723 51,469.8135

Reliability 
Improvement 
in terms of 
EENS

– 39.6777% 5.8366% 44.6102%

Total line 
resistive loss 
(kW)

224.9804 224.9804 98.6877 98.6877
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Herd sine cosine algorithm; TE: Total expenditure on AR installation by EUCs; 
TIC: Total investment cost; TMC: Total maintenance cost; EENS: Unsupplied 
energy; CUE: Cost of unsupplied energy; SCDF: Sector customer damage func-
tions; CPV: Cumulative present value; PSE: Profit due to the supplied energy; 
TEP: Total expected profit; IFR: Inflation rate; LGR: Load growth rate; ITR: Interest 
rate; TEP: Total expected profit; KHA: Krill Herd algorithm; SCA: Sine cosine 
algorithm; DE: Differential evolution; NOA: Number of AR.
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