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ORIGINAL RESEARCH

A robust principal component 
analysis‑based approach for detection 
of a stator inter‑turn fault in induction motors
Ali Namdar* 

Abstract 

Health condition monitoring of induction motors is important because of their vital role and wide us in a variety of 
industries. A stator inter-turn fault (SITF) is considered to be the most common electrical failure according to statisti-
cal studies. In this paper, an algorithm for the detection of an SITF is presented. It is based on one of the blind source 
separation techniques called principal component analysis (PCA). The proposed algorithm uses PCA to discriminate 
between the faulty components of motor current signatures and motor voltage signatures from other components. 
The standard deviation of one of the decomposed vectors is used as a statistical SITF criterion. The proposed criterion 
is robust to non-fault conditions including voltage quality problems and large mechanical load changes as well as 
harmonic contaminants in the voltage supply. In addition, with a straightforward and low computational burden in 
the fault detection process, the proposed method is computationally efficient. To evaluate the performance of the 
proposed method, large numbers of practical and simulation scenarios are considered, and the results confirm the 
good performance, high degree of accuracy, and good convergence speed of the proposed method.

Keywords:  Induction motors (IMs), Stator inter-turn fault (SITF), Voltage quality problem, Principal component 
analysis (PCA)
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1  Introduction
Because they give good and cost-efficient performance, 
induction motors (IMs) are the most widely used rotating 
electric machines over a range of industries. However, 
IMs suffer from failures due to mechanical, environ-
mental, and electrical stress [1]. Statistical reports on 
IM failures reveal that around 30–40% of the electrical 
failures can be attributed to the stator winding [2]. Typi-
cally, when a short circuit occurs between two turns of 
the stator winding and the voltage difference between 
the turns overcomes their insulation capacity, an insula-
tion breakdown results in a stator inter-turn fault (SITF). 
Therefore, stator winding faults usually start with a SITF 
and if not detected in a timely fashion, they can move to 

other high-intensity faults, including coil-to-coil, phase-
to-phase, or phase-to-ground faults [3].

1.1 � Motivation and literature review
Recently, several methods have been presented to detect 
stator winding faults. These methods can be broadly cat-
egorized into model-based and signal-based techniques 
[4]. Although model-based methods are found on a single 
analytical model they are less accurate and more complex 
than signal-based methods [5]. In general, signal-based 
approaches are classified into the two categories of inva-
sive and non-invasive methods [6]. Various tools are used 
for analyzing the signals such as, in the time domain cor-
relation functions [7], in the frequency domain the Fast 
Fourier Transform (FFT) [8], and in the time–frequency 
domain the Short Time Fourier Transform (STFT) [9] 
and Wavelet Transform (WT) [10]. However, they all 
have limitations and drawbacks that require further 
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investigation. For instance, although FFT is the most 
well-known signal analysis tool in the steady-state it has 
insufficient accuracy during dynamic conditions. Time–
frequency domain analysis can be used to overcome the 
weaknesses of FFT, though unfortunately, the biggest 
drawback of STFT is the use of a fixed-size window for 
analyzing all frequencies. To overcome the shortcomings 
of STFT-based algorithms, WT and principal component 
analysis (PCA)-based algorithms can be adopted. These 
decompose the input signals into several components 
for better resolution while retaining important compo-
nents in the original signals. In WT, these components 
are called approximations and details, whereas in PCA 
they are called principal components (PC). Although 
the use of a variable size-window in the WT can solve 
the shortcoming of STFT-based algorithms, it has some 
weaknesses compared to PCA, e.g.: (1) it needs differ-
ent sampling frequencies for different frequency sub-
bands; (2) it has severe reliance on the suitable choice of 
the mother wavelet signal (Haar, Daubechies, Symlets, 
…); and (3) it has dependence on the decomposition 
approach (DWT and WPT) and method of approxi-
mating the analytical signal (via FFT or FIR) [11]. Thus, 
owing to the disadvantages of WT compared to PCA, 
the use of a PCA-based algorithm as an appropriate and 
efficient technique is recommended to address the weak-
nesses of other techniques.

In invasive methods, sensors play an important role 
and are physically installed on the electrical machine to 
capture the required signals. Typically, the extracted sig-
nals are temperature [12], stator frame vibration [13], and 
acoustic noise [14]. The proposed indices based on MCS 
and MVS are stator current envelope [15], instantaneous 
total harmonic distortion (ITHD) [16], instantaneous fre-
quency [17], air-gap torque [18], instantaneous electrical 
power [19], negative sequence stator current [20], and 
stator current zero-crossing [20]. The main advantages of 
non-invasive methods compared to the invasive include 
lower cost and less disturbance in normal operation 
because there is no physical installation of sensors, bet-
ter performance in detection of weak faults, and higher 
reliability [6].

Because of the overlap between signatures related to 
fault and non-fault conditions, some of the indices listed 
for SITF detection are not reliable for non-fault condi-
tions such as voltage quality problems [21]. As an illustra-
tive example, ITHD and instantaneous frequency indices 
are not robust to non-fault conditions such as voltage sag 
and voltage swell problems. Furthermore, air-gap torque 
and negative sequence stator current may experience 
maloperation in an unbalanced power supply voltage.

Aside from the mentioned techniques, a variety of 
other methods based on artificial intelligence have been 

suggested for the detection of SITFs. These are catego-
rized in Table  1. The most common approaches here 
are fuzzy logic, expert systems, evolutionary algorithms 
and artificial neural networks [6]. The main drawbacks 
of fuzzy logic based methods are unpromising efficiency 
in inaccurate inputs and complete dependence on exper-
tise and human intelligence, whereas methods based on 
expert systems have less flexibility, insufficient accuracy 
and higher complexity. Evolutionary algorithms can be 
used for detection of a stator inter turn fault but often 
suffer from the need for considerable time so are unsuit-
able in online fault diagnosis [6].

Methods based on MLP and RBF algorithms, which 
are generally called conventional neural networks, suffer 
from two main shortcomings. These include the inability 
to self-learn without feature extraction and the need for 
a huge dataset for training. In modern neural network-
based methods such as deep learning, the self-learning 
problem is solved. However they still have the main 
weaknesses as briefly tabulated in Table 1.

Although SVM can handle outliers better and provides 
promising accuracy in fault detection, it still suffers from 
the need for large data and has sluggish performance in 
large data. In k-NN, easy implementation is a prominent 
advantage but having slow real time performance and 
being sensitive to outliers are its main weaknesses. One 
of the main advantages of ANN is the adjustability for 
better classification, although its main drawback is over-
fitting. Merits of using decision trees and random forest 
include immunity against external noise, but overfitting 
and a long training period are their big weaknesses. Naive 
Bayes is another algorithm that is used because of its 
robustness to noise. Nonetheless, this classifier depends 
on the probability of two independent sets. Deep Learn-
ing is the latest approach used in research in the field of 
fault detection, including CNN, RNN, LSTM and AE. 
Although this technique provides good accuracy and 
is able to solve the self-learning without feature extrac-
tion problem, its biggest drawbacks are the need for a 
large amount of data in different conditions and also 
that the training process requires a long time. Thus, this 
technique requires a powerful processor to perform the 
training process on a large database. This is the most 
prominent weakness compared to other methods. As 
an overall trend, the need for massive data is considered 
the biggest weaknesses of artificial intelligence-based 
methods.

1.2 � Aim and contribution
In this paper, a robust strategy for detecting a SITF based 
on MCS and MVS is proposed to minimize the interfer-
ence with other possible transient disturbances. In gen-
eral, the deviation of the post-disturbance signal from the 
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pre-disturbance one (which has a sinusoidal waveform) is 
the basis of the proposed method. The main steps of the 
proposed method are listed as follows:

	 I.	 Once a SITF happens, some distortions appear in 
the ideal sinusoidal current and voltage signals. 
Using a recursive and straightforward formulation 
based on PCA,

	II.	 those fault-related blind sources which are most 
present in one of the decomposed vectors are 
extracted.

	III.	 The post-disturbance signals may be different from 
the pre-disturbance signals. In that case the fault 
can be identified using extracted decomposed vec-
tors. The standard deviation of one of the decom-
posed vectors is proposed as a statistical criterion 
to detect SITFs. The criterion value exceeds the 
defined threshold in a fault condition, whereas 
in normal conditions, such as mechanical load 
change, it is less than the defined threshold value.

	IV.	 An auxiliary criterion based on voltage signal is 
introduced to increase the robustness of the pro-
posed criterion against non-fault voltage condi-
tions such as sag, swell, and imbalance.

	V.	 Low-computational mathematical burden, fast 
response, as well as comprehensiveness are some of 
the main merits of the proposed method.

1.3 � Paper organization
In the rest of the paper, Sect. 2 introduces a mathemati-
cal model of IMs with STIF and fault resistance ( Rf  ), 
while in Sect.   3, the theory of the PCA algorithm and 
an explanation of the proposed method are presented 
in more detail. To confirm the performance of the pro-
posed method, a simulation study is investigated under 
different conditions in Sect.  4, whereas in Sect.  5, the 
validation of the proposed method with experimen-
tal data is provided. Section  6 discusses the impact of 
some important parameters on the proposed crite-
rion and consequently experimental implementation 
requirements and factors affecting accuracy are inves-
tigated in Sect. 7. In Sect. 8, a comparison between the 
proposed method and other similar methods is carried 
out, and finally, conclusions are presented in Sect. 9.

Table 1  The categorization of artificial intelligence-based methods

Method based Main weaknesses

Fuzzy logic [22] 1. Necessity to large accessible data
2. Unpromising efficiency in inaccurate inputs
3. complete dependence on expertise and human 
intelligence

Expert systems [23] 1. Insufficient accuracy
2. Complexity
3. Low flexibility

Evolutionary algorithms [24] 1. Require long time
2. Unsuitable for online fault diagnosis

Artificial neural network [25] Conventional neural networks RBF [26] 1. Inability to self-learning without feature extraction
2. Necessity to large accessible dataMLP [26]

SVM [27] 1. Necessity to large accessible data
2. Sluggish Performance due to large data requirement

k-NN [28] 1. Necessity to large accessible data
2. Slow performance in real time
3. Outlier-sensitivity

ANN [29] 1. Necessity to large accessible data
2. Overfitting

Modern neural networks Decision trees and random 
forest [30]

1. Necessity to large accessible data
2. The longest training period
2. Overfitting

Native Bayes [31] 1. Necessity to large accessible data
2. Suitable only for independent features

Deep learning CNN [32] 1. large data requirement
2. Need long time for trainingRNN [33]

AE [34]

LSTM [35]
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2 � Mathematical model of IM considering SITF
To assess the performance of fault detection algorithms 
and study the changes of the variables in different motor 
operating conditions, it is very important to use a suitable 
model of IM. Several IM models have been introduced 
for different targets [36]. Here, a qd0 model considering 
an SITF with fault resistance ( Rf  ) is considered. This has 
been presented in [37]. In general, the following assump-
tions are made in this model [38]:

	 I.	 The motor air gap is considered to be uniform, and 
hence the notching effects and generating space 
harmonics are ignored.

	II.	 Temperature-dependent parameters in the model 
do not change because of the assumption of con-
stant motor temperature.

	III.	 There is unsaturation of the magnetic field due to a 
constant permeability.

	IV.	 Along the air gap, the generated magneto-motive 
forces of stator and rotor phases propagate sinusoi-
dally.

	V.	 Hysteresis, skin, and eddy current effects are not 
taken into account.

Figure 1 illustrates a three-phase stator winding in star 
connection with an SITF in phase “a” where µ is the ratio 
of the shorted turns to the total number of turns in one 
phase. Accordingly, the stator and rotor circuit equa-
tions of IM considering an SITF based on Kirchhoff’s 
circuit theory according to the defined parameters in the 
Nomenclature section are written as:

(1)

[Vabcs]= [Rs][Iabcs +
d

dt
[Lss][Iabcs]+ [Lsr ][Iabcr ]− Lsf If ] − [Za]If

where Vabcs = [VaVbVc]
T , Iabcs = [IaIbIc]

T , [Za] = [µRs00]
T

,[Rs] = diag[RsRsRs] and [Rr] = diag[RrRrRr] . It is worth 
noting that the suffixes of s , r and f  are related to the sta-
tor, rotor, and fault, respectively.

The electromagnetic torque and rotor speed are written 
as:

To separate the abc parameters of the motor, Eqs. (1)-
(6) are transformed into the stationary reference frame 
with direct-quadrature-zero (qd0) transformation matrix 
as:

where 
[

�qd0s

]

 , 
[

�qd0s

]

 and 
[

�qd0s

]

 are the stator fluxes, rotor 
fluxes and stator short-circuit flux in the qd0 reference 
frame, respectively, and T [Za] =

[

2
3
µRs0

1
3
µRs

]

.
The flux equations in the stationary reference frame 

qd0 can be expressed as:

where Ls = Lls +
3
2
Lms , Lr = Llr +

3
2
Lms and Lm = 3

2
Lms .  

Am and Bm are introduced in Tables 1 and 2 of [37] and 
have constant values. Thus, the electromagnetic torque 
equation in the stationary reference frame can be rewrit-
ten as:

(2)

0 = [Rr]

[
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]

+
d

dt
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Fig. 1  Stator winding with SITF on single phase
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where Ldrf = −BmLms and Lqrf = AmLms.
It should be noted that the appellation of the model vari-

ables is described in the Nomenclature section.

3 � Proposed inter‑turn fault detection method
From the study presented in [39], once an STIF occurs, 
some harmonics will be manifested in the air-gap flux den-
sity and induced in the stator current, as:

where fFault and f50Hz denote the SITF harmonics rel-
evant to the order h = 1, 2, 3, . . . , and fundamental fre-
quency, respectively. p and s are the number of pole pairs 
and motor slips, respectively. The order of the stator time 
harmonics is defined by m = 1, 3, 5, . . ..

Figure  2a illustrates the phase-a stator current and 
Fig. 2b shows the corresponding spectrogram. As seen in 
Fig. 2a, an SITF occurred at t = 1s. As shown in Fig. 2b, 
the B-zone power increases relative to the A-zone power 
because of the appearance of the SITF components 
according to (13) in the stator current. Hence, to study 

(10)
Tem =

3P

4

[

Lm
(

IqsIdr − IdsIqr
)

+ Ldrf IqrIf − Lqrf IdrIf
]

(11)fFault = f50Hz

[

h

p
(1− s)∓m

]

the behavior of the SITF components, it is reasonable to 
pass the stator current through a high-pass filter with a 
cut-off frequency of 150  Hz. A PCA algorithm is then 
employed to extract the principal components for detec-
tion of the SITF. In the following sub-sections, the theory 
of PCA is discussed.

3.1 � Theory of PCA in detail
PCA is an orthogonal transform for feature extraction 
and is one of the blind source separation and dimen-
sionality-reduction techniques that uses mathematical 
principles to transform a large set of possibly correlated 
variables into their components, namely, principal com-
ponents that contain most of the required information.

Figure  3 introduces PCA to better explain the PCA 
theory. As illustrated, the two vectors of X1 and X2 are 
the data vectors. However, as can be seen, from either 
the X1 or X2 axis, the data cannot be classified, but it 
becomes sufficient if these data vectors are transferred 
to D1 and D2 by a mapping matrix. Given that the data 
around the D1 axis have more variance than around the 
D2 axis, so the D1 axis has better separability than the 
D2 axis.

In this analysis, the number of the measured signals 
and the sample number of each measured signal are 
denoted by M and N  , respectively, and the principal 

Table 2  The energy of different decomposed vectors

Scenario E(D1) E(D2) E(D3) E(D4) E(D5) E(D6)

Inter-turn fault

µ = 0.02 to µ = 0.4 V 29.42 28.86 31.79 30.53 30.73 29.83

I 63.79 54.56 94.86 71.63 24.64 54.91

Rf  = 0 Ω to Rf  = 2000 Ω V 29.73 28.52 30.85 29.43 30.02 29.84

I 52.85 52.12 93.94 67.08 23.76 55.78

THD = 0.2% to THD = 10.2% V 29.73 28.43 30.91 28.83 29.84 28.31

I 51.76 48.97 91.43 68.52 18.92 48.63

SNR = 60 db to SNR = 30 db V 31.44 30.05 32.33 31.47 31.45 30.92

I 67.73 48.65 93.64 72.58 28.73 55.83

Voltage quality problems

Voltage sag 10% to 35% V 61.52 54.51 95.97 82.85 28.43 58.71

I 56.42 51.12 86.51 43.04 33.94 34.95

Voltage swell 10% to 35% V 62.84 58.43 96.81 84.43 36.79 59.46

I 53.86 48.97 89.56 47.76 32.79 33.52

Unbalanced voltage 2% to 5% V 60.63 52.61 94.58 81.63 34.51 58.06

I 50.08 43.94 85.53 46.53 28.62 31.48

Capacitor switching with increase the 
power factor from 0.74 to 1

V 63.72 56.47 95.79 82.34 33.52 53.74

I 52.83 46.71 86.84 44.41 31.44 32.57

Parallel motor switching V 62.74 53.27 94.51 82.47 33.92 57.95

I 52.63 46.97 88.47 44.15 37.82 34.57

Mechanical load 0.5 p.u to 1.8 p.u V 11.24 12.47 12.87 10.98 11.07 11.43

I 25.35 24.68 26.87 25.41 23.47 24.35
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components are constructed as linear combinations of 
the measured signals. Hence, the decomposed vectors 
Dj

(

j = 1, . . . ,K
)

,K ≤ M are shown as:

where X = [x1, x2, . . . , xM] is the set of measured signals 
with dimension N ×M , while A represents the mapping 
weight matrix with dimension M × K  . Equation (14) can 
be rewritten in matrix form as:

To compute A , eigenvectors of the covariance matrix 
are required. So, in the first step, the covariance matrix C 

(12)Dj = Aj,1x1 + . . .+ Aj,MxMforj = 1, . . . ,K

(13)D = XA

with dimensions M ×M is calculated through multiply-
ing the measured signals by their transposes, as:

In the covariance matrix, the relationship between the 
two dimensions can have positive, negative, and zero 
values. Positive and negative values of covariance show 
directly and indirectly proportional between the two 
dimensions, respectively, while zero value of covariance 
represents that the two dimensions are independent. In 
the next step, the eigenvectors of the covariance matrix 
are obtained, as:

where V  and E are eigenvector matrices with dimensions 
M ×M and a diagonal matrix whose diagonal elements 
are eigenvalues corresponding to its eigenvector, respec-
tively. To find the mapping weight matrix, eigenvectors 
should be reordered according to the size of the corre-
sponding eigenvalues in a way that the first eigenvector is 
proportional to the largest eigenvalue and the last eigen-
vector is proportional to the smallest eigenvalue. Here-
after, the first K  columns of the reordered eigenvector 
matrix are selected as A.

3.2 � Implementation of the proposed algorithm
According to PCA theory, the number of sources con-
sidered to be separated from each other is fewer than or 
equal to the number of measured signals ( K ≤ M ). Gen-
erally, a fault may occur in one phase or another non-
fault situation may affect the three-phase currents and 
voltages. In this way, in the proposed method, the three-
phase motor signals are considered as inputs to the pro-
posed method.

As mentioned in the previous section, a high-pass filter 
with a cutoff frequency of 150 Hz is used to eliminate the 
SITF components. Figure 4 illustrates the high-frequency 
components of the three-phase currents in the case of an 
inter-turn fault condition ( µ = 0.05).

As observed in Fig. 4, two consecutive data windows 
are used in the proposed method. Hence, X is defined 
as:

where xnah , x
n
bh and xnch are the high-frequency vectors of 

the signals in the running window. Also, the high-fre-
quency vectors of the signals in the previous window are 
denoted as xn−1

ah  , xn−1
bh  and xn−1

ch  . It should be noted that.
x can be the measured stator three-phase currents or 

voltages, while n is the window number.

(14)C =
1

N
XTX

(15)V−1CV = E

(16)X =

[

xnah xnbh xnch xn−1
ah xn−1

bh xn−1
ch

]

(a)

(b)
Fig. 2  A simulated inter-turn fault ( µ = 0.05 ) characteristics, a The 
a-phase stator current signal, b a-phase stator current spectrogram

Fig. 3  Introduction of principal component analysis (PCA)



Page 7 of 24Namdar ﻿Protection and Control of Modern Power Systems            (2022) 7:48 	

In order to classify the fault quantities from other com-
ponents, the data vector must be transferred from X 
coordinates to D according to the formulations of PCA 
based on (14)—(17). Consequently, the decomposed vec-
tors D1, D2 , D3 , D4 , D5 and D6 are obtained. These are 
proportional to the descending order of the eigenval-
ues. For instance, the decomposition results of the sta-
tor three-phase currents in the case of an inter-turn fault 
( µ = 0.05 ) according to Fig. 4 can be observed in Fig. 5. It 
is worth noting that the stator three-phase voltages can 
be used in other scenarios, such as voltage quality prob-
lems, in the same way.

To discriminate the SITF conditions from other con-
ditions, the energy of the decomposed vectors is calcu-
lated according to (19) and the results are tabulated in 
Table  2. As shown in Table  2, the current energy of D3 
is the highest of all during an inter-turn fault, and the 
voltage energy of D3 has the most presence of voltage 
quality problem source. Therefore, it can be concluded 
that the main source of the inter-turn and voltage qual-
ity problems signatures are present in D3 . In this way, the 

standard deviation of D3 can be introduced as a criterion 
to separate the conditions.

where E
(

Dj

)

 , k and N  denote the energy of the j-th 
decomposed vector, the number of samples, and the total 
number of decomposed vector’s samples, respectively.

The standard deviation of D3 is defined as the fault 
detection criterion, as:

where σw , Num , xkw and εw denote the standard devia-
tion of the w-th data window, the number of window’s 
samples, the k-th sample of the w-th data window, and 
the mean value corresponding to the w-th data window, 
respectively.

(17)E
(

Dj

)

=

N
∑

k=1

[

Dj[k]

max
(

Dj

)

]2

(18)σw =

√

∑Num
k (xkw − εw)

Num

Fig. 4  The high-frequency components of three-phase currents in case of an inter-turn fault ( µ = 0.05)
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To prevent malfunction of the proposed criterion 
because of non-fault conditions such as voltage quality 
problems, the stator three-phase voltages, and the stand-
ard deviation of D3 are used as inputs to the algorithm 
and auxiliary criterion, respectively.

One of the basic requirements of the proposed method 
is to define the thresholds for current and voltage criteria 
that have been selected based on large numbers of simu-
lation and practical scenarios. In general, once the value 
of the current criterion is higher than its defined thresh-
old while the voltage criterion does not exceed its prede-
fined threshold, it can be considered as a fault condition. 
Whereas if both the current and voltage criteria are 
above their predefined thresholds, the algorithm identi-
fies this condition as a voltage quality problem. If none 
of the voltage and current criteria reach their defined 
thresholds, it can be considered as a normal operating 
condition. The flowchart of the proposed method is pre-
sented in Fig. 6.

4 � Simulation results for performance assessment 
of the proposed method

Simulation studies have great importance to the inves-
tigation into the dynamic fault behavior. Hence, a 
1  kW three-phase IM with 220  V, 4 poles, and 50  Hz 

specifications based on (6)-(12) is simulated in MAT-
LAB/SIMULINK. The considered scenarios in the simu-
lation can be listed as follows:

•	 Inter-turn fault ( µ = 0.05)
•	 Voltage quality problems
•	 Voltage sag of 20%
•	 Voltage swell of 10%
•	 Unbalanced voltage of 2.64%
•	 Mechanical load changes from 0.7 to 1.5 pu
•	 Load rejection from 0.7 pu to no load

From Fig. 2, the current and voltage signals of the sim-
ulated IM in SIMULINK are gathered with a sampling 
frequency of 7812.5  Hz and are then passed through a 
high-pass filter with a cut-off frequency of 150 Hz. Then, 
by using two consecutive sliding windows each having 
a length of 156 samples (20  ms) and updated cycle by 
cycle, the matrix of X is created. Then, from (14)-(17) the 
decomposed vector D3 is extracted. Finally, the standard 
deviation of D3 is calculated. It is worth noting that both 
threshold values of Thi and Thv are selected as 0.01 based 
on the Otsu thresholding method [40], as well as experi-
mental and simulation results in various cases including 

Fig. 5  The decomposition results of an inter-turn fault ( µ = 0.05 ), the largest eigenvalue is related to D1 and the other components of three-phase 
stator currents are defined in the same arrangement
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inter-turn fault, voltage quality problems, and mechani-
cal load change.

As seen in Fig. 7a, the PDF curves of normal and fault 
condition have an intersection point at 0.01. Therefore, 
Thi = 0.01 is a suitable threshold value in the current 
criterion for discriminating inter-turn fault from normal 
conditions. From the simulation and practical results, the 
performance of the current criterion is similar to voltage 
quality problems.

To prevent this malfunction, the voltage criterion is 
used as an auxiliary criterion. In a fault condition, the 
voltage criterion changes slightly compared to normal 
operating conditions, whereas in voltage quality prob-
lem cases, the voltage criterion changes significantly. 
Therefore, the Otsu thresholding method is used to dif-
ferentiate the fault criterion changes from voltage qual-
ity problems by selecting an appropriate threshold. From 

Fig. 7b, Thv = 0.01 can be seen as an appropriate thresh-
old value in the voltage criterion for a robust perfor-
mance against the voltage quality problems.

4.1 � Inter‑turn fault case
With µ as the fault severity, several inter-turn fault sce-
narios with µ between 0.02 and 0.1 are studied to eval-
uate the performance of the criteria. Here, only an 
inter-turn fault ( µ = 0.05 ) is presented as a typical case. 
In Fig. 8, the three-phase stator currents and voltages, as 
well as their corresponding high-frequency components 
and suggested criteria are demonstrated.

As can be observed in Fig. 8a, by applying an inter-turn 
fault at t = 1s , the three-phase currents are changed and 
become unbalanced. It is clear from Fig. 8b that because 
of the occurrence of the fault, some high-frequency com-
ponents have been created in the three-phase currents. 
By extracting the decomposed vector D3 and calculating 
its standard deviation in Fig. 8c, a sudden increase in the 
current criterion occurs and reaches 0.058 units from 
zero and exceeds its predefined threshold of 0.01. In a 
similar side of the algorithm according to Figs. 8d-f, the 
three-phase voltage signals have small changes and the 
standard deviation varies fractionally from 0 to 0.0001 
indicating a very significant difference from the threshold 
of 0.01.

Fig. 6  The flowchart of the proposed method

Fig. 7  The threshold selection process using Otsu thresholding 
method. a PDF curves of normal condition and fault condition for 
selecting a threshold value of current criterion, b PDF curves of 
voltage quality problem and fault condition for selecting a threshold 
value of voltage criterion
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In practice, some unwanted harmonic components 
may result in harmonic contamination in the voltage sup-
ply. Therefore, the performance of the proposed criteria 
should be investigated before and after the fault occur-
rence. Since the general basis of the suggested criteria 
is on the distortion of the measured signal after the dis-
turbance, for studying the ability of the proposed algo-
rithm in presence of voltage supply contaminated with 
high-order harmonic components several case studies 
are considered. Different levels of total harmonic dis-
tortions THD s between 1 and 5% are fed to the voltage 
supply. Here, to detect the coil-to-coil fault ( µ = 0.1 ) 
considering 5% THD in the voltage supply, the perfor-
mance of the algorithm is investigated. It can be observed 
from Fig. 9b that before t = 1s , because of the harmonic 
contamination in the voltage supply, there are some 
high-frequency components in the three-phase stator 

currents. According to Fig. 9c, although the value of the 
current criterion is not zero and is equal to 0.001, it is 
significantly lower than 0.01. This indicates a strong per-
formance against harmonic pollution in the voltage sup-
ply up to THD = 5% . On the other side, from Fig. 9d, the 
three-phase voltage signals are out of sinusoidal form 
because of harmonic contamination in the voltage sup-
ply. Consequently, as shown in Fig.  9f, the value of the 
pre-fault voltage criterion is approximately 0.002. At the 
moment of t = 1s , the voltage criterion value reaches 
0.005 which is lower than its predefined threshold. It is 
worth mentioning that a higher THD can be dealt with 
by re-adjusting the thresholds.

4.2 � Voltage quality problems case
There is a serious impact of non-fault transient condi-
tions on the performance of Ims. Thus the performance 

a d

b e

c f
Fig. 8  Performance evaluation of proposed criteria using simulation results for an inter-turn fault ( µ = 0.05 ), a Three-phase stator current signals, 
b High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e High-frequency 
components of three-phase stator voltage signals, f The voltage criterion
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of the proposed criteria under the most common tran-
sient conditions that may create overlap with inter-turn 
fault conditions must be evaluated. Hence, the perfor-
mance of the proposed criteria under voltage sag and 
swell are investigated in this section. Figures  10 and 11 
depict the simulation results for voltage sag of 20% and 
voltage swell of 10%.

In Fig. 10, a voltage sag of 20% happens for 5 cycles. As 
seen in Fig. 10d, the three-phase voltages are decreased 
from 1 pu to 0.8 pu at t = 1s resulting in the current and 
voltage criteria increasing to 0.0105 and 0.012 units as 
seen in Fig.  10c–f, respectively. It is interesting to note 
that both the current and voltage values of the criteria 
exceed their corresponding predefined thresholds and 

the proposed algorithm identifies this condition as a volt-
age quality problem.

As presented in Fig. 11d, a voltage swell of 10% occurs at 
time interval of t = 1s to t = 1.1s and the three-phase volt-
ages increase from 1 pu to 1.1 pu. Because of the voltage 
swell occurrence, the current criterion has increased approx-
imately to 0.015 in Fig. 11c and as observed in Fig. 11f, there 
is a growth to around 0.012 in the voltage criterion.

One of the most frequent voltage quality problems 
is voltage imbalance in the supply. In this section, an 
unbalanced supply voltage of 2.64% is investigated, 
and the simulation results are presented in Fig.  12. It 
should be noted that the voltage imbalance is defined 
according to [41]:

Fig. 9  Performance evaluation of proposed criteria using simulation results for a coil-to-coil fault ( µ = 0.1 ) in a voltage distortion with THD = 5.2% , 
a Three-phase stator current signals, b High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase 
stator voltage signals, e High-frequency components of three-phase stator voltage signals, f The voltage criterion
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Figure  12d shows that the stator voltages of phases 
a, b, and c change from 1 p.u to 1.02 p.u, 0.98 p.u, and 
0.98 p.u respectively, and the three-phase stator cur-
rents are out of equilibrium. As a result, both the cur-
rent and voltage criteria based on Fig.  12c–f reach 
0.015 and 0.0104 respectively. These exceed the prede-
fined thresholds.

(19)

voltage imbalance

=
maximumdeviation fromaverage phase voltage

average phase voltage
× 100

4.3 � Mechanical load changes case
In this section, we investigate the performance of 
the criteria when there is mechanical load change. A 
mechanical load increase from 0.7 to 1.5 pu is shown 
in Fig.  13. Although the three-phase stator currents 
increase significantly from 1 to 2 pu, the current cri-
terion value is approximately 0.0001 while the voltage 
criterion value is less than 0.00001, as seen in Fig. 13c–f 
Both are less than their defined thresholds, and thus the 
proposed algorithm considers it as a normal operating 
condition.

Fig. 10  Performance evaluation of the proposed criteria using simulation results for a voltage sag of 20%, a Three-phase stator current signals, b 
High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e High-frequency 
components of three-phase stator voltage signals, f The voltage criterion
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4.4 � Load rejection case
Another transient condition which can profoundly 
affect the performance of IMs is load rejection. Load 
rejection phenomena occur differently in generators, 
where the rejection of the load means the rejection of 
power whereas in motors it means the mechanical load 
is rejected. As load rejection in generators affects the 
electromagnetic environment, it is important to evalu-
ate the performance of the proposed criteria where load 
rejection may create ambiguity in the inter-turn fault 
conditions. In the following, the performance of the pro-
posed criteria under a load rejection from 0.7 pu to no 
load at t = 1 s is investigated. As shown in Fig. 14a, after 
the occurrence of the rejection, the three-phase stator 
currents fluctuate from 1 pu to 0.8 pu and subsequently 
the current criterion increases to 0.007. From the other 

side, as shown in Fig.  14d, the three-phase stator volt-
ages increase slightly from 1 pu to 1.08 pu and the voltage 
criterion also is significantly less than its threshold value 
(0.01) according to Fig. 14f.

As neither criterion exceeds the corresponding thresh-
old values the proposed algorithm does not maloperate 
in this condition.

5 � Practical results for assessment of the suggested 
method

To validate the simulation results and the proposed 
methodology, an experimental platform is implemented 
as shown in Fig.  15. This experimental bench consists 
of a three-phase IM with its specifications listed in 
Table 3, a data logger for recording the MCS and MVS 

Fig. 11  Performance evaluation of proposed criteria using simulation results for a voltage swell of 10%, a Three-phase stator current signals, b 
High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e High-frequency 
components of three-phase stator voltage signals, f The voltage criterion
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with sampling time of 128  µs, a coupled DC machine 
with different mechanical load torques for IM, and a 
three-phase autotransformer as a variable voltage sup-
ply. The practical scenarios can be summarized as:

•	 Inter-turn fault ( µ = 0.05)
•	 Voltage quality problems
•	 Voltage sag of 20%
•	 Voltage swell of 10%
•	 Unbalanced voltage of 2.8%
•	 Mechanical load changes from 0.7 to 1.5 p.u

For implementing voltage quality problems such as 
voltage sag and swell, two controllable and uncontrol-
lable methods have been used. The meaning of con-
trollable is the use of 3 autotransformers for regulating 

voltages of the motor. Using the controllable method, 
motor supply voltages can be increased or decreased 
to the desired value over a certain time period, but the 
uncontrollable method can be implemented by starting 
a large motor in parallel with the test motor and turn-
ing off the large parallel motor load that is fed from the 
voltage source respectively. In unbalanced voltage, the 
controllable method is also used and an unbalanced 
three-phase source has been created by this method. 
It should be noted that most scenarios of voltage qual-
ity problems have been implemented based on the 
controllable method although uncontrollable methods 
have been used to show the flexibility of the proposed 
algorithm. Figures  16, 17, 18, 19, 20 depict the practi-
cal results of different cases. These consist of inter-turn 
fault, voltage quality problems and mechanical load 

Fig. 12  Performance evaluation of proposed criteria using simulation results for an unbalance voltage of 2.64%, a Three-phase stator current 
signals, b High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e 
High-frequency components of three-phase stator voltage signals, f The voltage criterion



Page 15 of 24Namdar ﻿Protection and Control of Modern Power Systems            (2022) 7:48 	

changes. From Fig.  16, it can be clearly seen that the 
simulation results results are confirmed and because of 
the fault occurrence, some high-frequency components 
are created at t = 0.53s as.

indicated in Fig.  16c–f. The current criterion value 
increases dramatically from 0.006 to 0.04 whereas the 
voltage criterion value remains approximately stable at 
0.005. The values of the current and voltage criteria are 
higher and lower than their corresponding thresholds. As 
can be seen, the practical results are largely identical to 
the simulation results, and the suggested algorithm rec-
ognizes this as a faulty condition.

Figures  17, 18, 19 illustrate the results of some non-
fault scenarios such as voltage sag, voltage swell and 
unbalanced supply voltage. In Fig.  17c, a voltage sag 

occurs at t = 0.62s and the current and voltage criteria 
in Fig.  17b–d reach 0.021 and 0.02, respectively, which 
exceed the threshold of 0.01.

A voltage swell of 10% happens for 10 cycles resulting 
in an abrupt change of the high-frequency components 
of the voltage and current signals, and are similar to cor-
responding scenarios in simulation. Because of the sud-
den changes, both criteria have exceeded their defined 
threshold values as shown in Fig. 18b–d.

In the next step, the results of an unbalanced voltage 
of 2.8% as one of the possible voltage quality problems 
is investigated in Fig. 19. As seen in Fig. 19c, the voltage 
imbalance is applied at t = 0.66s and the stator voltages 
of phases a, b and c change from 1 to 1.03 pu, 0.95 pu,

Fig. 13  Performance evaluation of proposed criteria using simulation results for a mechanical load change of 80%, a Three-phase stator current 
signals, b High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e 
High-frequency components of three-phase stator voltage signals, f The voltage criterion
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Fig. 14  Performance evaluation of proposed criteria using simulation results for a load rejection from 0.7 p.u to no load, a Three-phase stator 
current signals, b High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e 
High-frequency components of three-phase stator voltage signals, f The voltage criterion

Fig. 15  Implemented experimental platform for detecting SITF

Table 3  Specification of IM used

Symbol Quantity Value

Pn Nominal power 1 KW

Vabc Rated voltage 220 V

Iabc Rated current 3.6 A

fs Rated frequency 50 Hz

cos(∅) Rated power factor 0.74

J Rotor inertia 0.0025 Kg m2

P Number of poles 4

ωr No load speed 145.0368 rad/s

Rs Stator winding resistance 8.4 �

Rr Referred rotor winding resistance 8.2 �

Lls Stator winding leakage inductance 32.78 mH

Llr Referred rotor winding leakage inductance 32.78 mH

Lm Magnetizing inductance 437.67 mH
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respectively. It is evident that the current and voltage 
criteria increase from 0.007 and 0.005 to 0.017 and 0.012 
respectively, with both criteria crossing their correspond-
ing threshold values in Fig. 19b–d.

As a general trend based on the simulation and 
practical results, both the current and voltage criteria 
exceed their defined threshold values when a voltage 
quality problem occurs.

Finally, the practical results of mechanical load 
changes are presented in Fig. 20. In this case, the three-
phase currents increase gradually from 1 to 2 pu, while 
according to Fig.  20c–f, the values of the current and 
voltage criteria are both less than 0.01.

6 � Robustness of the criteria against parameter 
variation

In this section, the flexibility of the algorithm considering 
the effects of different parameters, such as fault resist-
ance, harmonic contamination in the supply voltage, 
mechanical load change rate and noise, are evaluated.

6.1 � Effect of fault resistance
The results of the proposed criterion in the case of 
inter-turn faults with different intensities for changes 
in fault resistance from 0 to 2000 Ω are tabulated in 
Table 4.

Fig. 16  Performance evaluation of proposed criteria using practical results for an inter-turn fault ( µ = 0.05 ), a Three-phase stator current signals, b 
High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e High-frequency 
components of three-phase stator voltage signals, f The voltage criterion
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a c

b d
Fig. 17  Performance evaluation of proposed criteria using practical results for a voltage sag 20%, a Three-phase stator current signals, b The current 
criterion, c Three-phase stator voltage signals, d The voltage criterion

a c

b d
Fig. 18  Performance evaluation of proposed criteria using practical results for a voltage swell 10%, a Three-phase stator current signals, b The 
current criterion, c Three-phase stator voltage signals, d The voltage criterion
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As shown in Table  4, for changes in fault resistance 
from 0 to 1 Ω, the values of the current criterion are 
largely the same. For instance, in the inter-turn fault 
( µ = 0.05 ), the current criterion values are approximately 
0.055 whereas at a higher value of fault resistance ( 100� ), 
the criterion decreases to 0.041 and this downward 
trend of the current criterion is continued for increase 
in the fault resistance to the values as high as thousands 
of ohms. As an illustration of this downward trend, at a 
fault severity of 0.05 and fault resistance of 1000 Ω, the 
current criterion is significantly reduced to 0.029, while 
for a fault resistance 2000 Ω, it reaches 0.023. From this 
perspective, notwithstanding this proximity to the mar-
gin value of the current criterion threshold (0.01) at high 
fault resistance, the proposed method is still robust for 
fault resistances as high as thousands of ohms.

The performance of the proposed criterion for the other 
fault intensities such as inter-turn fault ( µ = 0.02 ), inter-
turn fault ( µ = 0.07 ) and a coil-to-coil fault ( µ = 0.1 ) are 
also investigated. As can be seen, the value of the current 
criterion in each fault resistance increases with increas-
ing fault intensity. For instance, at Rf = 1000� , with 
fault intensity increasing from 0.02 to 0.1, the values of 
the criterion increase from 0.02 to 0.047. Consequently, 
the proposed algorithm is robust against different fault 
resistances considering different fault intensities. It 
should be noted that the results in Table 4 are reported 

based on 1280 different simulation cases and 450 differ-
ent experimental cases.

6.2 � Effect of harmonic supply voltage contamination
As discussed, under normal conditions, both the current 
and voltage criteria are less than 0.01. At the moment 
of fault inception, the current criterion exceeds its pre-
defined threshold whereas the voltage criterion remains 
below 0.01. Accordingly, if the voltage supply is contami-
nated with unwanted harmonics, the value of the cur-
rent criterion before the fault inception and the value of 
the voltage criterion after the fault occurrence may cross 
their corresponding thresholds. This will eventually lead 
to maloperation of the proposed algorithm. Therefore, it 
is necessary to ensure that harmonic contamination will 
not result in maloperation of the algorithm. The results of 
this case are presented in the form of a line graph for an 
increase of THD from 0.3 to 10.5% in Fig. 21. �i denotes 
the distance between the threshold and current criterion 
before the disturbance inception while �v is the distance 
between the threshold and voltage criterion after the 
fault occurrence.

From Fig. 21, it is clear that �i and �v remain almost 
constant with the increase of THD from 0.3 to 3.12%, 
but from THD = 3.12% onwards, �v has a steeper down-
ward slope than �i . At THD = 9.4% , �v is negative, but 
�i remains positive. Finally, at THD = 10.5%, both �i and 

Fig. 19  Performance evaluation of proposed criteria using practical results for a voltage swell 10%, a Three-phase stator current signals, b The 
current criterion, c Three-phase stator voltage signals, d The voltage criterion
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�v are negative. Here, the permissible THD in which the 
method can preserve its desirable robustness and perfor-
mance is considered to be 5.2% . However, the proposed 
algorithm can perform adequately for THD up to 8.8%.

6.3 � Effect of mechanical load changes
As mentioned earlier, both the current and voltage crite-
ria values are less than their thresholds in the mechani-
cal load change conditions. The results of different load 

Fig. 20  Performance evaluation of proposed criteria using practical results for a mechanical load change 80%, a Three-phase stator current signals, 
b High-frequency components of three-phase stator current signals, c The current criterion, d Three-phase stator voltage signals, e High-frequency 
components of three-phase stator voltage signals, f The voltage criterion

Table 4  Average current criterion value for different fault resistance

µ Rf (�)

0 0.01 1 100 1000 2000

0.02 0.044 0.041 0.039 0.029 0.02 0.015

0.05 0.058 0.055 0.053 0.041 0.029 0.023

0.07 0.067 0.063 0.06 0.048 0.041 0.036

0.1 0.081 0.079 0.076 0.055 0.047 0.039
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changes are listed in Table 5. TL1(p.u) and TL2(p.u) denote 
the load values before and after changes. It is evident that 
all values of the current criterion are less than 0.01 and as 
a result, this scenario can be considered as normal oper-
ating conditions.

6.4 � Effect of Gaussian Noise
Typically, the measured signals in the power system 
are contaminated with noise. Hence, the performance 
of the proposed criteria in the presence of Gaussian 
noise is assessed and the results are shown in Table 6, 
where Ps and Pn denote the power of the signal and 
noise, respectively. As observed, with decrease of 
SNR from 60 to 30db, both �i and �v decrease, and at 
SNR = 30db , �v becomes negative. Although the value 
of �i is positive, it is, and voltage criteria are both less 
than 0.01.

7 � Experimental implementation requirements 
and factors affecting accuracy

As described in the Introduction, signal-based methods 
are divided into invasive and non-invasive. Given that the 
proposed method is a non-invasive one, only the effects 
of faults in the stator current and voltage or other obtain-
able electrical quantities are used as a fault criterion and 
there is no need to install an additional sensor on the 
motor [6]. In this method, the measured currents and 

Fig. 21  Harmonic contamination effect on proposed criteria

Table 5  Current criteria value in different mechanical load changes

TL1(p.u) 0.7 0.2 0.6 0.5 0.6 0.3

TL2(p.u) 1.5 0.6 0.9 1 1.3 0.9

Current criterion value 0.0026 0.0013 0.001 0.0016 0.0021 0.0019

Table 6  White noise effect on proposed criteria

SNR(db) = 10log(Ps/Pn)

60 55 50 45 40 30

�i 0.0099 0.0085 0.007 0.005 0.003 0.001

�v 0.0098 0.0087 0.005 0.0024 0.0017 -0.004

a

b
Fig. 22  The accurate working values of CT and PT. a Three-phase 
stator currents, b Three-phase stator voltages
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voltages from the current transformer (CT) and poten-
tial transformer (PT) are used. The requirements of the 
proposed method in experiments are CT, PT and an 
algorithm in a computer or implemented in hardware for 
analyzing the behavior of the motor.

In the experiments, the current and voltage signals are 
measured with a Lutron DL-9954 (clamp meter), with 
voltage resolution and accuracy of 0.1 V and 1.2% respec-
tively, current resolution and accuracy of 0.01 A and 
1.5% respectively, and a data logger with a sample rate of 
128 µs. As an example, the accurate working values of CT 
and PT in an inter-turn fault with µ = 0.05 are illustrated 
in Fig. 22. As shown in Fig. 22a, when an inter-turn fault 
occurs at t = 0.53s , the three-phase currents increase 
approximately from 5 A to 5.9 A while the three-phase 
voltages go from 127 to 130 V.

Some factors can affect the accuracy and even cause 
the proposed criteria to maloperate, e.g.: (1) use of a 
CT and PT with improper accuracy class; (2) unsuitable 
selection of turns ratio regardless of motor power and 
voltage level; and (3) CT and PT saturation.

8 � Performance comparison between the proposed 
strategy and several state‑of‑the‑art techniques

In Table 7, the proposed approach is compared with sev-
eral other methods from the aspects of delay time, ana-
lyzing domain, the required signals, average accuracy, 
and robustness to voltage quality problems. The other 
techniques are selected based on MCS and MVS for an 
equitable comparison.

From Table  7, the difference between the calculated 
equivalent impedance and its reference value is presented 
as a fault criterion. Although robustness to voltage qual-
ity problems can be seen in [42], its biggest drawback, 
however, is the lowest average accuracy based on abun-
dant simulations and experimental results compared to 
the other methods. Reference [19] has the best time delay 
in comparison to the other methods, but it has insuf-
ficient accuracy for detecting faults, and is affected by 
selecting the appropriate window length in FFT-based 

methods. In [16], although the currents are used as the 
required signals, its most prominent shortcoming is 
the lack of robustness against voltage quality problems. 
In [17], there is an acceptable accuracy in the detection 
of inter-turn faults. However, it is vulnerable to voltage 
quality problems. The proposed method has shown the 
highest accuracy with a time delay of 20 ms. Robustness 
to voltage quality problems including voltage sag, voltage 
swell, unbalanced supply voltage, and harmonic contami-
nation in the supply voltage is the other merit of the pro-
posed method.

9 � Conclusion
Health monitoring of IMs is very important in indus-
try. This paper focuses on SITF detection in IMs, and 
addresses the challenges faced by fault detection meth-
ods including the needs for high accuracy, reduced time 
delay and ability to distinguish other conditions from a 
faulty condition. To this end, a blind source separation 
technique called principal component analysis (PCA) is 
presented to extract the faulty components of MCS and 
MVS from the other components. The standard devia-
tion of one of the decomposed vectors as a statistical 
SITF criterion is introduced. To improve the robustness 
of the proposed method against voltage quality problems, 
three-phase voltage signals are used as auxiliary signals. 
To verify the reliability of the proposed method, various 
simulation and practical scenarios are implemented, and 
the performances are compared with the other MCS-
based and MVS-based methods. As an overall trend, 
the main advantages of the proposed method over other 
state-of-the-art algorithms include: (a) being the most 
accurate in diagnosing conditions; (b) capability of detec-
tion of faults in 0.02  s; (c) robustness to voltage quality 
problems; and (d) simplicity in implementation and no 
need to install additional sensors. It is confirmed that the 
performance of the proposed criterion is robust to differ-
ent fault resistances considering different fault intensi-
ties. In addition, the proposed criteria can overcome the 

Table 7  Comparison of the proposed method with similar methods based on MCS and MVS

Comparative aspects

Analyzing domain The required signals Delay time (s) Average accuracy 
percentage (%)

Robustness to 
voltage quality 
problems

[42] t I-V 0.02 79 Yes

[19] t-f I-V 0.01 81 Yes

[16] t-f I 0.02 84 No

[17] t-f I 0.02 90 No

Proposed method t-f I-V 0.02 94 Yes
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voltage quality problems including sag, swell, unbalanced 
supply voltage, and harmonic contamination in the sup-
ply voltage.

The proposed method shows good performance in 
noisy conditions and during abrupt load change. Con-
sequently, it can be considered as an alternative for the 
detection of a SITF in IMs.
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