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Online estimation of SOH for lithium‑ion 
battery based on SSA‑Elman neural network
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Abstract 

The estimation of state of health (SOH) of a lithium-ion battery (LIB) is of great significance to system safety and 
economic development. This paper proposes a SOH estimation method based on the SSA-Elman model for the first 
time. To improve the correlation rates between features and battery capacity, a method combining median absolute 
deviation filtering and Savitzky–Golay filtering is proposed to process the data. Based on the aging characteristics of 
the LIB, five features with correlation rates above 0.99 after data processing are then proposed. Addressing the defects 
of the Elman model, the sparrow search algorithm (SSA) is used to optimize the network parameters. In addition, a 
data incremental update mechanism is added to improve the generalization of the SSA-Elman model. Finally, the 
performance of the proposed model is verified based on NASA dataset, and the outputs of the Elman, LSTM and SSA-
Elman models are compared. The results show that the proposed method can accurately estimate the SOH, with the 
root mean square error (RMSE) being as low as 0.0024 and the mean absolute percentage error (MAPE) being as low 
as 0.25%. In addition, RMSE does not exceed 0.0224 and MAPE does not exceed 2.21% in high temperature and low 
temperature verifications.
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1  Introduction
Renewable energy has attracted much attention because 
of sustainable development issues [1–4]. LIBs are widely 
used in both military and civil fields because of their high 
energy density, high rated voltage, strong adaptability to 
high and low temperatures and low cost. Accurate esti-
mation of SOH is of great significance to improving LIB 
safety and service life [5, 6], as well as improving the effi-
ciency of the LIB and reduce equipment operating costs 
[7]. From the SOH of the LIB, the aging degree of the LIB 
can be detected to assess any safety risks and determine 
when the battery needs to be replaced. This can bring 
huge benefits [4].

So far, many related studies have proposed a variety of 
methods to estimate the SOH of an LIB from multiple 

angles. The methods can be divided into direct measure-
ment, model-based and data-based methods. The direct 
measurement method is to use precise instruments to 
measure the open circuit voltage (OCV), the current or 
the impedance, so as to estimate the SOH. Measuring the 
OCV directly is to estimate the SOH through the intrin-
sic relationship between the OCV curve and capacity [8], 
while measuring the current directly to estimate the SOH 
is achieved by integrating the current flowing into or 
out of the battery [9]. On the other hand, measuring the 
impedance directly is to estimate the SOH considering 
the principle that the more serious the battery aging, the 
greater internal resistance at low frequency [10]. Electro-
chemical impedance spectroscopy (EIS) is the most com-
monly used method. The relationship between EIS and 
the SOH can be obtained by nondestructive measure-
ment of the LIB impedance [11]. In addition to the EIS 
method, current pulse and the Joule effect are also used 
to measure the internal resistance [12, 13]. Although the 
direct measurement method has high accuracy and low 
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computational complexity, it needs additional hardware 
and the precision instruments needed for accurate meas-
urement are expensive. Thus, this method is more suit-
able for the laboratory environment and conditions, and 
it is difficult to realize online estimation.

The model-based methods include the electrochemi-
cal, empirical degradation and equivalent circuit mod-
els. The electrochemical model is to study the aging of 
the LIB from the internal chemical working mechanism, 
such as internal lithium-ion diffusion, average radius of 
solid particles, and changes of negative electrode mate-
rials [14, 15]. The accuracy of this method can meet the 
requirements, but the establishment of the electrochemi-
cal model is too complicated and many partial differential 
equations need to be set up. At the same time, the estab-
lished model is too targeted and can only estimate the 
aging process of a specific type of battery or under spe-
cific conditions, so it is not suitable for practical applica-
tion. Empirical degradation models find it easy to identify 
parameters and have good robustness, and can be applied 
online [16]. However, the battery capacity will fluctuate 
locally in the whole life cycle of a LIB, and this cannot 
be reflected in the empirical degradation models [17]. 
The equivalent circuit model is obtained by simulating 
the working state of the battery through circuit elements 
[18, 19]. The method estimates the SOH by identifying 
the model parameters. After modeling, Kalman filter and 
other methods are usually used to achieve parameter fit-
ting [20, 21]. In [22], a second-order RC equivalent circuit 
model is established and the adaptive unscented Kalman 
filter algorithm is used to estimate the ohmic internal 
resistance of the battery in real time. The SOH is then 
estimated according to its mapping relationship with the 
ohmic internal resistance. This model has the advantages 
of being intuitive, of general and simple structure, while 
the relationship between voltage, current and imped-
ance can be analyzed through circuit diagrams. How-
ever, the adaptability is poor, and the model parameters 
are difficult to accurately identify. Factors such as cur-
rent, discharge power, charge rate and temperature have 
nonlinear effects on battery characteristics, and these 
are difficult to take into account when modeling. At the 
same time, the internal parameters of the battery change 
with time, and this cannot be reflected in the equivalent 
model, and thus the model cannot respond well to a fluc-
tuation of capacity [23].

In recent times the data acquisition and calculation 
have greatly improved, so the data-driven methods 
are very popular and have been widely used in vari-
ous classifications and estimates [24–29]. Compared 
with other methods, the data-based methods do not 
need to deeply understand the internal mechanism of 
the battery. They analyze the external characteristics 

closely related to battery aging, such as voltage, cur-
rent, battery temperature, etc. Through the data-driven 
methods, the nonlinear mapping relationship between 
these parameters or parameter deformation and battery 
capacity can be established, thus avoiding the compli-
cated process of chemical analysis and parameter iden-
tification [30]. The main data-driven methods include 
linear regression, support vector machine and neural 
networks, etc. For example, in [31], logistic regres-
sion and regularization are used to estimate the cycle 
life of the battery, although the accuracy needs to be 
improved, and the estimation error is 9.1%. In [32, 33], 
the estimation method using the improved ant colony 
optimization algorithm to optimize the support vector 
regression, and the estimation model based on the bidi-
rectional long-term memory neural network, are pro-
posed, respectively. Although the estimation accuracy is 
improved, the generalizability of each model is low, and 
the cycle times of SOH estimation in each battery data 
set are insufficient. Generally speaking, the extracted 
features are critical to the application of data-driven 
methods in practice. In [34], the terminal voltage dur-
ing discharge is used as an input to the model, and Box-
Cox transformation is used to improve the correlation 
between the input and battery capacity. However, it is 
unrealistic to use the data in the discharge process to 
realize the estimation, because the data in that process 
is unstable while the voltage or current vary according 
to the load. In addition, the incremental capacity (IC) 
curve is used for extracting new features. In [35], a con-
struction method is used to reshape the IC curve and 
new features with high correlation rate are extracted 
from the modified IC curve. In [36], joint gray-scale 
correlation analysis is used to extract the optimal local 
IC curve for new features. However, when using the 
IC curve to realize SOH estimation, it is necessary to 
extract the IC curve first. Thus, if the deformation of 
the IC curve is used, a new step is needed to extract 
the features. These are not conducive to applying the 
model in practice. Therefore, the features based on the 
IC curve are not the most direct and effective, and it is 
most beneficial for practical application to extract the 
features directly from voltage or current.

The data-driven methods are efficient ways to estimate 
the SOH, and have strong adaptability to nonlinear sys-
tems. Looking back at the current data-driven SOH esti-
mation methods, although there are many types and their 
development has been rapid, these methods still have the 
following problems:

1.	 The existing data-driven methods rarely consider the 
noise in the battery data. Because of the influence 
of the running state and environment, information 
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collected by the data sensor always has noise, so the 
extracted features also contain wrong information.

2.	 The features extracted by existing estimation meth-
ods are not always the most straightforward and 
effective in a particular context and application. 
Some have poor estimation effect, because of either 
using unstable discharge data, or extracting features 
requiring complex processing which adds extra com-
putation.

3.	 The current SOH estimation methods only consider 
the existing experimental data, so the model will not 
be updated after training. For the complex situation 
of actual estimation, the training samples are obvi-
ously insufficient, and this makes the model lack gen-
eralizability and be unable to update experimental 
data.

4.	 Both high and low temperatures have important 
effects on the SOH of LIBs [37, 38]. However, the 
existing methods only validate the performance of 
the model at 24 °C without considering the effect of 
temperature.

5.	 When the parameters of data-driven models are 
trained, there will be local optimization problems 
and even gradient explosions.

In solving the above problems, the main contributions 
of this paper are summarized as follows:

1.	 Combining the MAD filtering with SG filtering, a 
MAD-SG filtering method is proposed to process the 
data. Using MAD-SG improves the correlation rate 
between the proposed features and the capacity of 
the LIB without making it excessively smooth, so the 
estimated SOH can still reflect the local recovery of 
capacity.

2.	 For analyzing the aging of LIB, five features are pro-
posed. The advantages of these features are that the 
correlation rates are greater than 0.99 after MAD-
SG filtering, and only the voltage and current in the 
charging stage are needed. In addition, compared 
with existing features, the features proposed in this 
paper require no complicated processing nor calcula-
tion.

3.	 Adding the IUM of battery data. The data obtained 
after each estimation is added to the training set to 
make full use of the battery data to improve the gen-
eralizability of the model.

4.	 Considering the influence of temperature, the gener-
alizability of the model is further verified by the data 
of the low-temperature and high-temperature bat-
tery.

5.	 The SSA-Elman model is proposed for the first time. 
A novel SSA optimization algorithm is used to opti-

mize the weights and thresholds of the Elman neu-
ral network, and this can prevent local optimization 
problems and improve calculation accuracy.

The rest of the paper is organized as follows: Sect.  2 
introduces the data processing method and feature 
extraction process, while Sect.  3 describes the general 
framework of the proposed method, the SSA-Elman 
model and the IUM. In Sect.  4, the SSA-Elman model 
and proposed features are verified by experiments, and 
the experimental results are given. Finally, conclusions 
are presented in Sect. 5.

2 � Extract features
2.1 � SOH definition
The basic definition of SOH is the ratio between the cur-
rent and nominal capacities, as:

where CP is the current actual capacity and CN is the 
nominal capacity [39]. In the course of the operation of 
the battery, its SOH decreases continuously.

2.2 � Data sources
The dataset from the NASA Ames prognostics center of 
excellence (PCoE), i.e., BatteryAgingARC-FY08Q4, Bat-
teryAgingARC_25-44 and BatteryAgingARC_45-48, is 
used in the experiments. The analysis process for extract-
ing features uses B0005, B0006, B0007, and B0018 in the 
dataset. In addition to the four batteries, B0046, B0047, 
and B0048 in the BatteryAgingARC_45-48 dataset and 
B0029, B0030, and B0031 in the BatteryAgingARC_25-44 
dataset are also used in the experimental verification pro-
cess [40]. All batteries are commercial 18650 LIB, and the 
data type is the mat format of MATLAB.

The experimental process is repeated charging and dis-
charging until the nominal capacity drops by around 30%. 
Charging is performed under constant current (CC)–
constant voltage (CV) mode and discharging is under 
CC mode. Figure  1 shows the charging and discharging 
voltage and current of B0005, where Fig. 1a and b show 
the terminal voltage and current during charging and dis-
charging, respectively. As shown in Fig. 1a, the battery is 
charged in CC mode of 1.5  A until its terminal voltage 
reaches 4.2 V, and then it is charged in CV mode until the 
charging current drops to 20 mA. In Fig. 1b, discharging 
is performed in CC mode at 2 A until the battery termi-
nal voltage drops to 2.7 V. The operation of the selected 
battery dataset during charging is the same, but the dif-
ferences are the experimental temperature, the discharg-
ing current and the cut-off voltage during discharging. 
The details of each battery dataset are shown in Table 1.

(1)SOH =
CP

CN
× 100%
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2.3 � Aging mechanism of LIB
A fundamental issue to consider when using LIBs is 
the aging of the batteries. Figure  2 shows the decreas-
ing capacity of four LIBs with the number of cycles. LIB 
aging is a very complex process, and is caused by physical 
and chemical mechanisms. It can be seen in Fig.  2 that 
this decline is not a simple linear one, and there are some 
small increases in capacity during the aging [41], which 
are due to charges stored in the region of the negative 
electrode that extend beyond the positive electrode [42, 
43]. Such capacity fluctuations cannot be ignored when 
estimating the SOH.

Figure  3 shows the aging mechanism of LIBs. This 
is mainly caused by the loss of lithium-ion inventory 
and the loss of active species [44]. The aging of LIBs is 
that the actual capacity declines and the internal resist-
ance increases [45], as lithium-ion deposits to form a 
solid electrolyte interface (SEI) layer on the surface of 
the negative electrode. This hinders the insertion and 
detachment of the lithium-ion. The SEI layer is the result 
of side electrochemical reactions when lithium-ions are 
consumed. The increase of the internal resistance will 
accelerate the terminal voltage reaching the upper cut-
off voltage limit to a certain extent during charging, thus 
reducing rechargeable power. With the increase of charg-
ing and discharging cycles, chemical reactions occur 
repeatedly inside the battery and the performance of the 
LIB decreases gradually.

2.4 � Data processing method
There will inevitably be outliers and noise in the data col-
lected in the experiments. In order to eliminate the influ-
ence of outliers and noise, it is necessary to preprocess 

Fig. 1  Terminal voltage and terminal current for charging and 
discharge of B0005

Table 1  Details of the selected dataset

Data set Temperature (°C) Discharge (A) Cut-off voltage (V) Size (MB)

BatteryAgingARC-FY08Q4  B0005 24 2 2.7 15.2

 B0006 24 2 2.5 15.2

 B0007 24 2 2.2 15.3

 B0018 24 2 2.5 8.10

BatteryAgingARC_25-44  B0029 43 4 2.0 2.74

 B0030 43 4 2.2 2.74

 B0031 43 4 2.5 2.74

BatteryAgingARC_45-48  B0046 4 1 2.2 3.47

 B0047 4 1 2.5 3.54

 B0048 4 1 2.7 3.57
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the data so as to improve the correlation rate between 
features and capacity of the LIB. In this paper, MAD and 
SG filtering are combined to form the MAD-SG filtering 
method.

The general idea is to specify a threshold of data fluc-
tuation, and when the data exceeds the threshold, it is 
considered as an abnormal value [47]. The principle is as 
follows.

Set the window size as m , and Xm×1 represents all the 
data contained in the window. The median of Xm×1 is 
calculated first, and the absolute deviation between each 
data point and the median of Xm×1 is then calculated as:

Generally, the threshold is an integer multiple of MAD. 
When there are data points that exceed this threshold, 
the data is considered as an outlier.

(2)MAD = median xi −median(Xm×1)

SG is a smoothing filter based on polynomial fitting to 
eliminate noise and minimize the error of mean-square 
of 2M + 1 samples centered on n = 0 . This method can 
better retain the distribution characteristics of relative 
maximum, minimum and width [48]. Its principle is to 
obtain the best coefficients of the polynomial in the fol-
lowing equation:

where y(n) represents the coefficients of the polynomial, 
ai represents the coefficient of each value and ni represent 
the counter of the effective data on the smoothed value.

The optimal coefficients will result in minimized error 
in 2M + 1 samples, while the error function is shown as:

where ∈N is the error function for the Nth polynomial 
and x[n] is the raw value of the nth data.

By setting the derivative of the error function to 0, the 
optimal coefficient can be obtained, as:

Finally, the filtered data can be obtained by putting the 
best coefficient into (3).

Given the fluctuation of data, for the MAD method, 
this paper selects three times the M of every 10 points as 
the threshold for outlier processing. The eliminated outli-
ers are replaced with the linear interpolation of adjacent 
values. For SG filtering, after testing, the effect is best 
when M = 2 and k = 3 . When processing the data, the 
MAD filter is first used to remove the outliers, and then 
the SG filter is used for smoothing. The MAD-SG filter 
can well retain the characteristics of local recovery of 
capacity, remove the outliers and smooth the data. After 
data processing, the correlation rates between features 
and LIB capacity have improved. The effect of MAD-SG 
is shown in Table 3 and Fig. 5 in Sect. 2.5.

2.5 � Propose features
Using data-driven method to realize the estimation of 
SOH is mainly to find the features which have high a 
correlation rate with the SOH. In real application, the 

(3)y(n) =

N
∑

i=0

ain
i

(4)

∈N =

M
∑

n=−M

(

y(n)− x[n]
)2

=

M
∑

n=−M

(

N
∑

i=0

akn
k − x[n]

)2

(5)
∂ ∈n

∂ai
= 0

Fig. 2  Capacity curve of LIB with the number of cycles (B0005, B0006, 
B0007 and B0018)

Fig. 3  Aging mechanism of lithium battery. Reprinted with 
permission from [46]. Copyright 2016, Elsevier B.V
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charging process of the LIB is under CC–CV mode, 
which is consistent with different types of LIBs. How-
ever, the discharging process varies with the actual load, 
and it is difficult to extract stable features. Therefore, this 
paper only uses the data of the charging stage to extract 
features.

The Pearson correlation coefficient is widely used 
as an important index to measure the correlation rate 
between two vectors. The calculation formula of Pear-
son correlation is given as:

where X and Y are two vectors, Cov(X ,Y ) is the covari-
ance of X and Y, while σX and σY  are the standard devia-
tions of X and Y, respectively. The value of the Pearson 
correlation is between − 1 and 1. If it is greater than 0, the 
two vectors are positively correlated, and if it is less than 
0, the two vectors are negatively correlated. If the correla-
tion rate is 0, the two vectors are irrelevant. Greater |PX ,Y | 
means higher correlation rate, while the higher the corre-
lation rate, the better the accuracy of estimating Y with X.

Figure 4 shows the relationship between the terminal 
voltage and charged electric quantity (CEQ) of B0005 
during the CC charging stage, referred to as a V–Q 
curve. V represents the terminal voltage of the battery, 
which is measured directly by the sensor, and Q repre-
sents the charged electric quantity, which is obtained by 
integrating the charging current. In Fig. 4, as the num-
ber of cycles increases and the battery ages, the V–Q 
curve begins to move up and left gradually. Because the 
impedance of the LIB increases, the LIB reaches the 
upper limit of the cut-off voltage faster.

In addition, it can be seen from Fig.  4 that in the 
CC charging stage, as the battery cycle increases, the 

(6)PX ,Y =
Cov(X ,Y )

σXσY

battery aging becomes more serious, and less electri-
cal quantity is charged when the voltage reaches 4.2 V. 
Based on this phenomenon, a correlation rate analy-
sis of the CEQ and LIB capacities in different voltage 
ranges can be performed.

Before analysis, the MAD-SG filter is used to process 
all data. Figure 5 shows the curves of CEQ when the ter-
minal voltage reaches 4.2 V after processing the data with 
different filtering methods. As seen in Fig.  5, there are 
two obvious outliers. The small fluctuation of the curve is 
the embodiment of the capacity recovery phenomenon. 
It can be seen that MAD cannot fit the original curve 
well although it removes the outliers. In contrast, SG can 
fit the original curve well but retains the outliers, while 
MAD-SG removes the outliers and can also fit the origi-
nal curve well.

The results of correlation rate are shown in Table 2. It 
can be seen that the CEQ in the CC charging stage has 
high correlation with the LIB capacity. The first feature 
proposed is called CEQ1 for voltage from 3.4 to 4.2  V, 
and the Pearson correlation coefficient between CEQ1 
and LIB capacity is 0.9975. The second feature proposed 
is called CEQ2 for voltage from 3.8 to 4.2  V in the CC 
charging stage, and the correlation between CEQ2 and 
the LIB capacity is 0.9958.

In Fig.  4, the V–Q curve of the aged battery shifts to 
the upper left compared with the new battery, so the 
areas contained in the integration of V to Q are also dif-
ferent. Therefore, the next feature proposed is the area 
contained in the integral of V to Q within the specified 
voltage range, i.e., the V–Q area (VQA). The correlation 
rate between the VQA of voltage range selected and bat-
tery capacity is also different according to start voltage 
and end voltage, as shown in Table 3.

Fig. 4  V–Q curve of B0005 battery
Fig. 5  The curve of CEQ when the terminal voltage reaches 4.2 V 
after processing the data with different filtering methods
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It can be seen from Table 3 that before the start volt-
age reaches 3.7  V, the correlation is negative regard-
less of the end voltage, whereas the positive correlation 
begins to appear after the start voltage reaches 3.7  V. 
The maximum negative correlation is − 0.9825, and the 
interval is 3.3–4.1  V. The maximum positive correla-
tion is 0.9739, and the interval is 4.0–4.2 V. In order to 
express the relationship between the selected interval 
and the coefficient more intuitively, the data in Table 3 
are drawn into a three-dimensional surface graph 
and a profile analysis diagram using the interpolation 
method, as shown in Figs. 6 and 7, respectively.

By trying the intervals with high correlation rate 
in the three-dimensional surface diagram, the inter-
val with higher correlation rate than that in Table 2 is 
finally obtained. The area of interval 3.305–4.175  V is 
taken as the third feature VQA3, and its correlation is 
− 0.9925. The area of interval 3.425–4.179  V is taken 
as the fourth feature VQA4, and the correlation is 
− 0.9915.

To calculate the CEQ, the charging time needs to be 
recorded. In order to improve the utilization of data, 

the fifth feature is extracted based on the charging time. 
However, considering that users do not fully charge every 
time in practical application, the total charging time is 
optimized. Thus, the fifth feature is the time from the 

Table 2  Pearson correlation analysis between CEQ and LIB capacity with different voltage ranges

START​ END

3.6 V 3.7 V 3.8 V 3.9 V 4.0 V 4.1 V 4.2 V

3.3 V 0.6589 0.7007 0.8326 0.9617 0.9928 0.9966 0.9975

3.4 V 0.6589 0.7007 0.8326 0.9617 0.9928 0.9966 0.9975

3.5 V 0.6764 0.7063 0.8358 0.9626 0.9929 0.9966 0.9975

3.6 V 0.7469 0.8566 0.9687 0.9936 0.9968 0.9974

3.7 V 0.8956 0.9788 0.9945 0.9967 0.9970

3.8 V 0.9884 0.9952 0.9961 0.9958

3.9 V 0.9941 0.9932 0.9916

4.0 V 0.9778 0.9688

4.1 V 0.9406

Table 3  VQA correlation analysis of different voltage intervals

Start End

3.4 V 3.5 V 3.6 V 3.7 V 3.8 V 3.9 V 4.0 V 4.1 V 4.2 V

3.3 V − 0.8669 − 0.7329 − 0.6854 − 0.6870 − 0.7467 − 0.8615 − 0.7188 − 0.9825 − 0.9493

3.4 V − 0.4920 − 0.5103 − 0.5616 − 0.6652 − 0.8120 − 0.7127 − 0.9772 − 0.9572

3.5 V − 0.6182 − 0.6560 − 0.6923 − 0.7232 − 0.4458 − 0.9690 − 0.9824

3.6 V − 0.6734 − 0.7241 − 0.2432 − 0.4247 − 0.9192 − 0.8123

3.7 V 0.6827 0.4091 0.4032 0.3221 − 0.0319

3.8 V − 0.8447 0.5349 − 0.7866 0.2480

3.9 V 0.7675 0.8415 0.9710

4.0 V 0.6962 0.9739

4.1 V − 0.4755

Fig. 6  Three-dimensional surface diagram of start voltage, end 
voltage and Pearson correlation rate
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beginning of charging to the battery terminal current 
falling to 0.8  A, which is called partial charging time 
(PCT5). The correlation between PCT5 and LIB capacity 
is 0.9972.

The features are proposed from the two dimensions 
of voltage and current, which can only be extracted by 
collecting the charging data, while corresponding to dif-
ferent stages of the charging process. This is to better 
fit the actual working conditions of the battery, so that 
some features can be extracted even when the battery 
is not fully charged and discharged. Finally, the correla-
tion rates between the five features and LIB capacity are 
shown in Table  4. At the same time, Table  4 also gives 
the correlations after different processing. It can be seen 
from Table  4 that the correlations obtained after using Fig. 7  Profile analysis diagram of three-dimensional surface diagram

Table 4  Pearson correlation rates between the five features and capacity of B0005 battery

Features CEQ1 CEQ2 VQA3 VQA4 PCT5

Unprocessed 0.8743 0.8732 − 0.9097 − 0.8974 0.6658

MAD 0.9651 0.9598 − 0.9302 − 0.9272 0.9317

SG 0.9423 0.9319 − 0.9648 − 0.9579 0.9682

MAD-SG − 0.9925 − 0.9915 0.9975 0.9974 0.9972

Fig. 8  Model structure
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the MAD-SG processing are the highest, with all above 
0.99.

3 � Proposed model
3.1 � Overall framework
In this paper, SSA is used to optimize an Elman neural 
network so as to realize accurate estimation of SOH. The 
specific model structure is shown in Fig. 8. The scheme 
can be divided into two parts: off-line training model 
and on-line SOH estimation. The off-line part is mainly 
to process data, extract features and train the SSA-Elman 
model. During the experiments, the discharge capacity 
given by the NASA dataset is used as the reference value. 
Based on the off-line training part, the online estima-
tion part uses the SSA-Elman model trained for estima-
tion. To further improve the performance of the model, 
the incremental update mechanism (IUM) is added. The 
voltage and current are input for only one cycle per esti-
mate, while after the estimation, the output of the model 
is used as the label for the input of this cycle to update 
the data. This process repeats until the end of estimation. 
Finally, the online estimation of SOH for LIB is realized.

3.2 � Elman neural network
The Elman neural network is a fully-connected dynamic 
feedback neural network, which has a local memory 
unit and local feedback function. It can not only realize 
the modeling of a static system, but also realize the map-
ping of a dynamic system and directly reflect the dynamic 
characteristics of the system [49]. Compared with a 
feedforward neural network, Elman adds an additional 
receiving layer on the basis of the three-layer structure 

of input, hidden and output layers, and is a one-step 
delay operator, which achieves the purpose of short-term 
memory. Therefore, the Elman model has the ability to 
adapt to time-varying characteristics. At the same time, 
it has stronger computing power and network stability 
[50]. While there is a nonlinear relationship between the 
parameters of LIB and SOH, these characteristics of the 
Elman neural network enable it to approach any nonlin-
ear relationship with ideal accuracy. Therefore, the Elman 
neural network is chosen as the infrastructure in this 
paper.

Figure  9 shows the Elman neural network structure 
with two input units, three hidden units and one output 
unit [51]. In Fig. 9, k represents the kth time, X(k) repre-
sents the input vector of the input layer, w1

i,j , w
2
i,j and w3

i,j 
represent the connection weights from the input layer 
to the hidden layer, from the receiving layer to the hid-
den layer, and from the hidden layer to the output layer, 
respectively. C(k) , C∗(k) and Y (k) represent the out-
put vectors of the hidden, receiving, and output layers, 
respectively. b1 to b4 are the thresholds of the receiving 
and output layers, respectively. The mathematical expres-
sions of the network are:

(7)C∗(k) = C(k − 1)

(8)C(k) = f
(

w1
i,jX(k)+ bi + w2

i,jC
∗(k)

)

(9)Y (k) = g
(

w3
i,jC(k)+ bi

)

f (·)

Fig. 9  Elman neural network structure with two input units, three hidden units and one output unit
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where bi represents the corresponding threshold, g(·) 
represents the activation function of output neurons, 
which is generally a linear combination, and f (·) repre-
sents the activation function of the hidden layer.

However, Elman also has the inherent defects of a neu-
ral network [52], such as slow training speed and easy to 
fall into local minima. These affect the training efficiency 
and estimation accuracy. In order to solve the prob-
lems, SSA is used to optimize the connection weight and 
threshold of Elman neural network, which can prevent it 
from falling into a local minimum and improve the train-
ing speed and estimation accuracy.

3.3 � Sparrow search algorithm
The SSA is a new type of natural heuristic algorithm 
based on group socialization characteristics. It was pro-
posed according to the behavior of sparrows foraging 
and avoiding predators. The algorithm has the advan-
tages of simple structure, easy implementation, few con-
trol parameters, strong optimization ability etc. The way 
for SSA to converge to the current optimal solution is to 
jump directly to the vicinity of the current optimal solu-
tion, so the SSA algorithm is superior to the grey wolf 
optimization, gravity search and particle swarm opti-
mization algorithms in terms of accuracy, convergence 
speed, stability and robustness [53, 54].

In the SSA algorithm, sparrows are divided into discov-
erer, follower and vigilant. The position of each sparrow 
corresponds to a solution. The positions of all sparrows 
in the sparrow group are represented by the X matrix, as:

where m represents the number of sparrows, and d rep-
resents the dimension of the variables to be optimized.

The fitness function corresponding to each sparrow is 
represented by the F matrix, as:

where f ([xi,1, · · · , xi,d]) in line i represents the fitness 
value of the ith sparrow. At each iteration, the location of 
the discoverer will be updated, as:

where t represents the current number of the iteration, 
and N represents the maximum number of iterations. α is 

(10)X =







x1,2 . . . a1,d
... · · ·

...
xm,1 · · · xm,d







(11)F =







f ([x1,1 . . . x1,d])
... · · ·

...
f ([xm,1 · · · xm,d])







(12)Xt+1
i,j =

{

xti,j · exp
(

−i
α·N

)

, if R2 < ST

xti,j + Q · L, if R2 ≥ ST

a random number and α ∈ (0, 1] . R2 represents the alarm 
value, which is a random number and R2 ∈ [0, 1][0, 1] . ST 
represents the safety threshold and ST ∈ [0.5, 1.0] . Q is a 
random number subject to a normal distribution, and L is 
a row vector whose elements are all equal to 1.

The update rule of the follower is given as:

where Xt
W  represents the worst position of the tth itera-

tion, and xt+1
DB  represents the position of the finder with 

the highest fitness value at iteration t + 1. M represents 
the 1× d matrix, in which the elements are randomly 
preset as 1 or − 1. M′ = MT (M ·MT )−1 , and MT means 
the matrix is transposed.

The location update of the vigilant is:

where xtGB represents the globally optimal location in the 
tth iteration, γ is the control step size and γ − N (0, 1) . k 
is a random number and k ∈ [−1, 1] , while ε is a constant 
that increases to prevent the denominator from being 0. 
fi is the fitness value of the ith sparrow, while fB and fw 
represent the global optimal and worst sparrow fitness 
values, respectively.

(13)

Xt+1
i,j =







Q · exp

�

Xt
W−Xt

i,j

i2

�

, if i > n
2

xt+1
DB + |Xt

i,j − xt+1
DB | ·M′ · L, if i ≤ n

2

(14)Xt+1
i,j =







xtGB + γ · |Xt
i,j − xtGB|, if fi �= fB

xtGB + k ·

�

Xt
i,j−xtGB

|fi−fw |+ε

�

, if fi = fB

Fig. 10  The IUM principle
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The super parameters that the SSA algorithm can 
adjust include the maximum number of iterations N, the 
number of sparrows n and the safety value ST. In addi-
tion, there are the number of discoverers PD, the num-
ber of vigilantes SD, and the upper and lower limits of the 
independent variable DL. The dimension d of the inde-
pendent variable is jointly determined by the input vector 
and the number of network layers.

3.4 � Incremental update mechanism
The generalizability of the model determines whether 
the model can be applied in practice. This is closely 
related to the amount of training data. Therefore, the 
IUM is added to improve the generalizability of the 
model. The mechanism is shown in Fig.  10. First, the 
SSA-Elman model is trained with the processed training 
set, and an estimate is then made, while only one cycle 
of SOH needs to be estimated for each estimation. Next, 
the estimated output is used as the label of the input, i.e., 
labeling. Finally, the labeled data is added to the training 
set, and the SSA-Elman model is updated. Therefore, the 
dataset and the SSA-Elman can be dynamically updated 
based on new data. Using the IUM can not only make 
full use of battery data, but also improve the generaliz-
ability of the model.

4 � Experimental verification
4.1 � Validation process
The experiments are implemented with MATLAB 
R2020B programming on a laptop. In the experiments, 
the data of B0005, B0006, B0007 and B0018 are selected 
to verify the accuracy and generalizability of the pro-
posed method. First, 70% of the data is used for training, 
and the rest is used to test the basic performance of the 
model. The model is then trained using 50% and 30% of 
the data to test the generalizability and robustness of the 
model. Finally, in order to further verify the performance 
of the model, the model is used for SOH estimation of 
a LIB at low and high temperatures, respectively. Both 
high-temperature and low-temperature experiments 
included three batteries. Two batteries in each experi-
ment are used as the training sets and the third is used 
as the test set. To reflect the performance of the model 
more clearly, the method is compared with the basic 
Elman neural network and the LSTM neural network. 

In the experiments, RMSE and MAPE are selected as the 
evaluation criteria of the model, calculated as:

where n represents the total number of cycles, ỹi and yi 
represent the predicted and measured values of the ith 
cycle, respectively. To prevent chance, the RMSE and 
MAPE given next are the average RMSE and MAPE 
obtained by running the model 5 consecutive times.

4.2 � Model parameters
The inputs are the five features proposed in Sect.  2, so 
there are five dimensions to the inputs. The parameters of 
the Elman and the LSTM are shown in Table 5. The super 
parameters that can be adjusted in the SSA algorithm 
mentioned in Sect.  3, such as the maximum number of 
iterations N and population size n, the number of discov-
erers PD, the number of vigilantes SD, the safety value 
ST, the upper and lower limits of the independent vari-
able DL, and the dimension of the parameters to be opti-
mized d, are set as shown in Table 6. RMSE is used as the 
fitness function to optimize the Elman neural network.

Figure  11 shows the curves of fitness value changing 
with the number of iterations. As shown, the fitness val-
ues gradually decrease during the iteration, which indi-
cates that the SSA algorithm has found suitable network 
parameters. In addition, the optimization of the param-
eters is completed before 20 iterations, which proves that 
the SSA is fast and effective.

4.3 � Results analysis
Figure  12 shows the outputs of the SSA-Elman, Elman 
and LSTM when using 70% training data. The output of 
the SSA-Elman model is clearly closer to the measured 
value than the Elman model. The output of the LSTM 
model is also ideal, but individual points deviate from the 
measured values, while the SSA-Elman model does not 
have such fluctuations. The accuracy of the SSA-Elman 

(15)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ỹi − yi
)2

(16)MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

ỹi − yi

yi

∣

∣

∣

∣

Table 5  The parameters of Elman neural network

Network Input layers Hidden layers Output layers Epochs Learning rate

Elman 5 15 1 500 0.0001

LSTM 5 50 1 500 0.005
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model is significantly higher than the Elman neural net-
work and LSTM neural network. The specific estimation 
errors with 70% training data are shown in Table 7.

It can be clearly seen in Table  7 that the estimation 
error of SSA-Elman is the lowest of the networks, with 
the lowest RMSE of 0.0024 and the lowest MAPE of 
0.14%. Using the SSA to optimize the Elman neural net-
work reduces RMSE by at least 0.0061 and MAPE by at 
least 0.67%. In Table  7, the errors of B0006 and B0018 
are larger, because the capacities of these two batteries 
fluctuate greatly. Compared with Elman and LSTM, SSA-
Elman is more adaptable to the fluctuations so the corre-
sponding errors are smaller. This is because the network 
parameters optimized by the SSA algorithm are more 
suitable for the fluctuation of capacity. It can be seen that 
using the SSA algorithm to optimize Elman has achieved 
good results, and the accuracy and stability of the SSA-
Elman model can meet the requirements.

4.4 � Verification of generalization
The generalizability of the model is very important, so 
further verifications are carried out. Here, 50% data and 
30% data are used to train the model to verify the gener-
alizability of the SSA-Elman model. Figure 13 shows the 
outputs of Elman, LSTM and SSA-Elman when using 50% 
training data. As can be seen from Fig. 13, the errors of 
the networks increase after reducing the training data, 
but the errors of SSA-Elman are significantly smaller than 
those of the other networks. When the training data is 
only 50%, Elman and LSTM can still maintain the same 
downward trend as the measured value, but the devia-
tions of the curves become obvious. It is worth pointing 
out that the SSA-Elman model can still show good estima-
tion ability, because of the added IUM to the SSA-Elman 
model, which improves the generalizability of the model.

Table 6  The super parameters that can be adjusted in the SSA algorithm

Parameters N n PD SD ST DL d

Setting 100 50 0.7 0.2 0.6 [− 5,5] 121

Fig. 11  The curve of fitness value changing with the number of 
iterations

Fig. 12  The outputs of SSA-Elman, Elman and LSTM when using 70% 
training data

Table 7  The estimation error of 70% training data RMSE and MAPE

Method B0005 B0006 B0007 B0018

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Elman 0.0085 0.94 0.0210 2.15 0.0088 0.96 0.0168 1.76

LSTM 0.0051 0.49 0.0094 0.91 0.0053 0.51 0.0082 0.79

SSA-Elman 0.0024 0.27 0.0054 0.42 0.0026 0.25 0.0053 0.51
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Table  8 shows the estimated errors of Elman, LSTM 
and SSA-Elman when using 50% of the training data. 
Both the RMSE and MAPE of the SSA-Elman model are 
smaller than other models, with the smallest RMSE of 
0.0097 and MAPE of 0.98%. The overall trend of the error 
is the same as in Table 7, but the reductions of the RMSE 
and MAPE values are more significant, reaching 0.0174 
and 1.86% respectively. Numerically, it can be seen that 
the method proposed outperforms the Elman model in 
both accuracy and generalization. At the same time, the 
performance of the model proposed is also better than 
the LSTM model.

Finally, all the models are trained with 30% data, and 
Fig.  14 shows the outputs of Elman, LSTM and SSA-
Elman. It can be seen from Fig. 14 that Elman and LSTM 
cannot accurately estimate the SOH with only 30% of the 
data for training, while the SSA-Elman model can con-
tinue to achieve SOH estimation because of the IUM. In 
addition, as shown in Fig.  14, because the training data 
is too small, the output of the Elman model has devi-
ated from the decline trend of the true value. Compared 
with the Elman model, the LSTM model still maintains 
the same decline trend as the true value, but the error 
increases significantly after experiencing a capacity 

fluctuation. In contrast, the SSA-Elman model can con-
tinue to achieve SOH estimation because of the IUM. 
Although the SSA-Elman model also has accumulated 
errors, the errors are significantly smaller than with other 
methods. Thus, the proposed method shows clear advan-
tages when the training data is insufficient.

The errors with 30% training data are shown in Table 9. 
As seen, the error of the SSA-Elman model is the small-
est, with the minimum RMSE of 0.0386 and MAPE of 
4.04%. Compared with the Elman model, the minimum 
RMSE of the SSA-Elman model is reduced by 0.0726, and 
the minimum MAPE is reduced by 9.50%. Thus, it proves 
that the IUM can significantly enhance the generalizabil-
ity of the model.

From the results obtained by training the model with 
70%, 50% and 30% data respectively, it is proved that 
the proposed features can support the model to achieve 
accurate estimation. Compared with Elman and LSTM, 
the SSA-Elman model has the smallest error and the 
highest accuracy. In addition, because of the addition of 
the IUM, the model proposed has good generalizability. 
Consequently, the SSA-Elman model can still achieve 
SOH estimation when trained with only 30% of the data.

Fig. 13  The outputs of SSA-Elman, BP, Elman and LSTM when using 
50% training data

Table 8  The estimation error of 50% training data RMSE and MAPE

Method B0005 B0006 B0007 B0018

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Elman 0.0271 2.87 0.0480 4.93 0.0354 3.61 0.0476 4.66

LSTM 0.0202 2.11 0.0399 4.02 0.0347 3.23 0.0415 4.07

SSA-Elman 0.0097 1.01 0.0125 1.11 0.0107 1.01 0.0118 1.08

Fig. 14  The outputs of SSA-Elman, Elman and LSTM when using 30% 
training data
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4.5 � High‑temperature and low‑temperature validation
High and low temperatures can significantly impact the 
lifetime of LIB, as well as the SOH estimation [55]. There-
fore, the SSA-Elman model is further verified at high 
temperature and low temperature. In the low tempera-
ture experiment, B0046 is used as an example to show 
the estimation results, shown in Fig. 15. In the high tem-
perature experiment, B0029 is used as an example and 
the estimation results are shown in Fig. 16. It can be seen 
from Figs. 15 and 16 that the proposed method can still 
estimate the SOH accurately, while the Elman model and 
the LSTM model can only estimate the overall downward 
trend of the SOH with large errors. This is because the 
IUM mechanism enables the model to fit the local vari-
ation of SOH well. In addition, the Ellman and LSTM 
models can still estimate the overall trend of SOH, which 
proves the effectiveness of the proposed features [56].

The estimated errors of the three batteries at low tem-
perature are shown in Table  10, while Table  11 shows 
the estimated errors for the three batteries at high tem-
perature. From the error data, it can be seen that the 
estimation accuracy of the proposed method is the high-
est, indicating that the estimation effect of the proposed 
method is superior to other common models. The esti-
mation results of the three models are clearly higher at 
high temperature than at low temperature, because the 
capacity is more stable and the fluctuation is smaller at 
low temperature. When the battery capacity fluctuates 
greatly, the errors of the three models all increase, but 
the errors of the proposed model are all within accept-
able ranges, e.g., RMSE is less than 0.0224 and MAPE is 
less than 2.21%. This proves that the proposed model can 
accurately estimate the SOH at high or low temperature.

Table 9  The estimation error of 30% training data RMSE and MAPE

Method B0005 B0006 B0007 B0018

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Elman 0.1243 13.54 0.1702 16.58 0.1142 12.25 0.1674 16.99

LSTM 0.0884 9.67 0.1351 13.72 0.1027 11.09 0.1387 12.79

SSA-Elman 0.0386 4.04 0.0665 6.87 0.0416 2.35 0.0632 6.94

Fig. 15  Estimated results for battery B0046

Fig. 16  Estimated results for battery B0029

Table 10  Estimation errors at low temperature

Method B0046 B0047 B0048

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Elman 0.0363 3.90 0.0569 6.31 0.0849 3.95

LSTM 0.0318 3.18 0.0317 3.05 0.0414 2.63

SSA-Elman 0.0131 1.30 0.0224 2.21 0.0224 1.94
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5 � Conclusion
It is of importance to estimate the SOH of LIBs. This 
paper presents a SOH estimation method based on the 
SSA-Elman model. After analyzing the aging principle 
and NASA dataset, five features are proposed. The corre-
lations of these features are all above 0.99 after using the 
proposed MAD-SG filtering, while they can be extracted 
by only collecting the voltage and current in the charg-
ing stage without complex data processing. Finally, the 
performance of the proposed model is validated by dif-
ferent experiments at 24  °C, 43  °C and 4  °C using the 
NASA dataset, and is compared with the Elman model 
and LSTM model. The experimental results demon-
strate that the features have good estimation perfor-
mance and the method proposed outperforms both the 
Elman model and LSTM model in terms of accuracy and 
generalizability.
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