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Power system transient stability assessment 
based on the multiple paralleled convolutional 
neural network and gated recurrent unit
Shan Cheng*   , Zihao Yu, Ye Liu and Xianwang Zuo 

Abstract 

In order to accurately evaluate power system stability in a timely manner after faults, and further improve the fea-
ture extraction ability of the model, this paper presents an improved transient stability assessment (TSA) method 
of CNN + GRU. This comprises a convolutional neural network (CNN) and gated recurrent unit (GRU). CNN has the 
feature extraction capability for a micro short-term time sequence, while GRU can extract characteristics contained 
in a macro long-term time sequence. The two are integrated to comprehensively extract the high-order features that 
are contained in a transient process. To overcome the difficulty of sample misclassification, a multiple parallel (MP) 
CNN + GRU, with multiple CNN + GRU connected in parallel, is created. Additionally, an improved focal loss (FL) func-
tion which can implement self-adaptive adjustment according to the neural network training is introduced to guide 
model training. Finally, the proposed methods are verified on the IEEE 39 and 145-bus systems. The simulation results 
indicate that the proposed methods have better TSA performance than other existing methods.
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1  Introduction
Given the development of power systems and the inte-
grated access of large intermittent renewable energy 
resources [1, 2], the existing power system is faced with 
various challenges and is more prone to various faults 
[3]. The three-phase short circuit fault, as the strongest 
destructive fault, may lead to power system transient 
instability. Thus, it is important to have an applicable 
transient stability assessment (TSA) method.

General TSA methods the time domain simulation 
(TDS) [4], the transient energy function (TEF) [5], and 
the extended equal area criterion (EEAC) methods [6]. 
The TDS method is computationally intensive and time-
consuming, the TEF method has some state variables 
unavailable, while the EEAC method merely works on 
a modern power system with limited range of analysis. 

Recently the progress of machine learning (ML) theory, 
such as with artificial neural networks (ANNs) [7, 8], sup-
port vector machines (SVMs) [9], decision trees (DT) 
[10], GRU [11] and their application in power system 
have made TSA methods more diverse. Although TSA 
law can be acquired from the data handled by ML, ML 
has insufficient ability to extract features from multi-
dimensional data, and is prone to under-fitting.

In recent years, deep learning (DL) has contributed to 
TSA. Starting from the data itself, DL is expert in cap-
turing the internal laws of large amounts of data, and 
has robust generalization performance. This overcomes 
the shortcoming of ML methods. In addition, TSA 
using a DL algorithm can effectively bypass the pro-
cedure of modeling and solving high-order nonlinear 
equations, and directly obtains the mapping relation-
ship between input features and stability labels. Some 
have applied DL algorithms, such as long short-term 
memory (LSTM) [12, 13], stacked autoencoder (SAE) 
[14, 15], deep belief network (DBN) [16–18] and CNN 
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[19–22] to TSA. Reference [12] uses LSTM to obtain 
a temporal self-adaptive TSA scheme, aiming to bal-
ance the trade-off between TSA accuracy and rapidity, 
and mine the temporal data dependencies. An LSTM-
based model which can decrease the predictive value 
with an invariant time step is proposed in [13], while 
[14] proposes an innovative algorithm by clustering a 
multi-branch stacked denoising autoencoder (MSDAE), 
combined with one-fusion layer and one logistic regres-
sion (LR), which together contribute to the distinc-
tive capability of the mining feature. Reference [15] is 
based on SAE and proposes an ensemble classifier in 
which SAE is combined with a fusion layer to classify 
the state of the power system. Su et  al. [16] attempts 
to integrate DBN with the reference-point-based non-
dominated sorting genetic algorithm to develop a novel 
preventive control scheme, whereas [17] presents an 
advanced DBN which takes the structural features of 
power system during loss function construction into 
consideration to better perform TSA. In Liu et al. [18], 
the number of nodes in each layer of DBN is decided by 
a particle swarm optimization algorithm and the inte-
grated algorithm has higher TSA accuracy. However, 
the input of DBN is limited by one-dimensional data, 
the training process is very slow, and the parameter 
selection is very difficult. Therefore, it is easy for DBN 
to fall into a local optimal solution and TSA application 
of DBN has significant limitations.

In contrast, CNN can adapt to the input data of vari-
ous dimensions and improve the data-fitting degree by 
parameter sharing and weight reduction. In Gao et  al. 
[19], a one dimensional-convolutional neural network 
(1D-CNN) with four convolutional-pooling layers is 
applied to TSA, and the demand of end-to-end time 
sequence extraction and TSA classification are fulfilled. 
However, [19] merely operates an individual CNN to 
extract the features and there is no in-depth study of the 
misclassification problem. To effectively address the mis-
classification problem, MP CNN is proposed in [20], and 
the classification results provided by several CNNs are 
synthesized according to the synthesis principle. In Shi 
et al. [21], a classification model with respect to the dif-
ference between two types of instability modes (aperiodic 
or oscillatory instability) based on CNN is created. This 
selects the bus voltage phasor provided by phasor meas-
urement units (PMUs) as the original input, and outputs 
three types of classification results: stable, aperiodic 
unstable or oscillatory unstable. However, the parameter 
adjustment of the FL function needs repeated experi-
ments. In Zhao and Shi [22] a creative CNN is designed 
which applies multi-size convolutional kernels instead of 
a single size convolutional kernel in order to extract the 
abstract features from multi-size time scales.

Although the above studies using CNN achieve good 
results, there exist the following problems:

(1)	 A single CNN cannot effectively extract the high-
order features contained in a macro long-term time 
sequence and does not, considered from the aspect 
of algorithm fusion, is a deficiency of CNN, one 
which severely restrains its TSA capability.

(2)	 The existing studies have not deeply probed the 
misclassification problem of difficulty in a classi-
fied sample because when a single neural network 
is applied to TSA, the difficult to classify sam-
ples around the classification threshold exist as an 
intrinsic misclassification problem, resulting in 
restricted classification accuracy.

(3)	 The previous FL function needs a large number 
of time-consuming experiments and a parameter 
adjustment procedure, which together result in low 
operational efficiency and will not be applicable in 
practical engineering.

Given the above problems, three solutions are pro-
posed. The main contributions of the paper are:

(1)	 To overcome the shortcomings of a single CNN 
network in macro feature extraction, an integrated 
network, called CNN + GRU, composed of CNN 
and GRU is proposed. CNN is to extract the high-
order features contained in a local short-term time 
sequence while, most importantly, GRU can fully 
mine the abstract characteristics hidden in a macro 
long-term time sequence. They complement each 
other to extract features more comprehensively.

(2)	 In order to solve the misclassification problem of 
difficult to classify samples and improve classifica-
tion accuracy, multiple CNN + GRU are connected 
in parallel to form the MP CNN + GRU. This can 
synchronously output multiple TSA results and 
improve the classification ability of samples around 
the classification threshold.

(3)	 To effectively avoid unnecessary parameter adjust-
ment, an improved FL function is proposed. This 
can implement self-adaptive adjustment according 
to the neural network training, and has stronger 
engineering applicability.

The rest of the paper is organized as follows: Sect.  2 
offers the introduction and basic structure of MP 
CNN + GRU, and CNN, GRU and CNN + GRU are intro-
duced. Section 3 introduces the MP CNN + GRU-based 
TSA where feature selection, normalization, stability 
criterion etc. are involved. Simulation verification is dis-
cussed in Sect. 4, and conclusions are drawn in Sect. 5.
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2 � The structure of the multiple paralleled 
CNN + GRU​

MP CNN + GRU, as an innovative algorithm proposed 
in this paper, can not only effectively extract the macro 
long-term and local short-term features of input infor-
mation, but also address the misclassification problem 
regarding difficult to classify samples to some extent. 
The network is illustrated in the following sub-sections.

2.1 � The structure of CNN
As illustrated in Fig.  1, CNN [19, 23] is composed of 
input, hidden and output layers, while the hidden layer 
consists of convolutional layers and pooling layers. The 
convolutional kernel in the convolutional layer performs 
a convolutional operation to complete feature extraction 
regarding local information, whereas the pooling layers 
refine the most representative features from the convo-
lutional layer and implement redundant information 
elimination. The convolutional and the pooling layers are 
stacked in turn to extract the high-order features.

Defining X = [x1, x2, x3, …, xt, …, xs], the original input 
of the input layer can be abbreviated as X ∈ Rs×d , where 
s and d are the length of time sequence and the feature 
dimension, respectively. After convolutional operation, 
X enters the convolutional layer. Convolutional formu-
las are shown as (1), while in the pooling layer, a max-
pooling operation expressed by (2), is applied.

The output layers have an identical structure to the 
common neural network, expressed by (3). We note 
that, for the TSA problem, neuron units on the last 
output layer are set to 1 and the output function is as 
shown in (4).

(1)ac,k = Re LU(Wc,k ∗ X + bc,k)

(2)ap = max(ac,k) i, j = 1, 2, . . . , n

(3)afc = Re LU(apWfc + bfc)

(4)ỹ = σ(afcWfc + bfc)

where σ(·) is a sigmoid activation function and y ͂, the 
classification result, indicates the probability of differ-
ent categories.

2.2 � The structure of GRU​
GRU [11, 24] realizes the memory and forgetting function 
of long-term features from input data through its unique 
update gate and reset gate structure. Compared with an 
LSTM network, GRU has simpler structure and shorter 
training time. In addition, compared with recurrent neural 
network (RNN), it can overcome the difficulty of gradient 
explosion. GRU’s structure is shown in Fig. 2 and the data 
handling procedures are shown as:

where Xt and Ht−1 denote the original input and the hid-
den state in the previous period, respectively. Wr, Wz and 
Wh are the matrices to be trained, and Rt and Zt are the 
calculation results of the reset gate and the update gate, 
respectively. σ(·) is used to control the outputs of Rt and 
Zt between 0 and 1. The candidate hidden state (Ht͂) can 
be obtained through Rt. It should be noted that, in the 
extreme cases, Rt = 0 means discarding the whole previ-
ous processing results and Rt = 1 means retaining all the 
results. Ht means the candidate state, and Zt is used to 
weigh the proportion of Ht͂ and Ht−1 about Ht.

2.3 � The basic structure of MP CNN + GRU​
In order to clearly illustrate MP CNN + GRU, CNN + GRU 
is clarified first. CNN + GRU, whose structure is depicted 
in Fig. 3a, is an innovative dual branch network, which can 
comprehensively acquire the features of original input from 
local short-term and macro long-term perspectives.

(5)Rt = σ(Wr · [Xt ,Ht−1])

(6)Zt = σ(Wz · [Xt ,Ht−1])

(7)H̃t = tanh(Wh · [Xt , (Rt ⊗Ht−1)])

(8)Ht = Zt ⊗ H̃t + (1− Zt)⊗Ht−1

Fig. 1  The structure of CNN

Fig. 2  The structure of GRU​
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After entering the input layer, the original input 
simultaneously and spontaneously flows into the CNN 
branch and the GRU branch. It is worth noting that 
the convolutional kernels in CNN mainly focus on 
the local short-term information operation within the 
corresponding scanning range. The previous convolu-
tional operation has no correlation with the operation 
in the next step. Therefore, CNN has higher sensitiv-
ity to the abstract features contained in voltage mag-
nitude and phase angle with a relatively short variation 
period. By contrast, GRU has an outstanding long-
term forgetting feature and memory function from the 
macro long-term perspective. It reviews all the previ-
ously scanned inputs according to the next input, so 
as to realize the front hanging and back connection of 
information. So GRU is adopted to extract the high-
order features implied in active and reactive power. 
These have a long variation period. Thus, both net-
works work together to complement each other. After 
the division of labor, the representative information 
handled by the dual branches is appropriately fused 
through the full connection layer in order to obtain the 
classification result.

An individual neural network applied in classification 
inevitably has a misclassification problem. Basically, the 
reason is that the neural network has intrinsic deviation 
when classifying the difficult to classify samples around 
the classification threshold. In the case of large devia-
tion, the classification result will cross the classification 
threshold, for example, from the stable to the unstable 
assessment region, ultimately resulting in misclassifica-
tion. This can cause enormous damage to the operation 
of the power system.

To resolve the latent issue, MP CNN + GRU is pro-
posed in this paper. It is composed of CNN + GRU par-
allel connection and its structure is shown in Fig.  3b. 
The methodology is rooted in the randomness of neural 

network training. The classification results regarding 
each CNN + GRU sub-model are synthesized to funda-
mentally solve the misclassification problem originat-
ing in intrinsic deviation. Thus, the output processing 
unit is adopted so as to obtain the final classification 
result. The methodology regarding output processing 
unit is shown as:

where k = 0 represents a stable sample and k = 1 means 
an unstable sample. Pi(Ck|X) represents the probabil-
ity that sample X is identified as category Ck in the ith 
CNN + GRU. PZ(Ck|X) is the final classification result, 
and is the average number value of category probability 
output by each CNN + GRU which denotes the prob-
ability that X is eventually identified as category Ck after 
comprehensive analysis.

Considering the real-time and effectiveness require-
ments of TSA, the number of the CNN + GRU sub-
model is set to 3, i.e., n equals 3.

3 � TSA based on the MP CNN + GRU​
3.1 � Feature selection and arrangement of original input
Selecting proper features makes a real difference to the 
TSA performance of the model, so three dominant fac-
tors are taken into consideration:

(1)	 Human subjectivity should be significantly reduced.
(2)	 Selected features are supposed to reliably summa-

rize the transient fault information of the system 
[19, 22].

(3)	 The arrangement mode of the original input should 
be appropriately selected because it can affect the 
readability of the model to the data during training.

(9)PZ(Ck |X) =
n
i=1 Pi(Ck |X)

n
, k = 0, 1

Fig. 3  The structure of MP CNN + GRU​
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Therefore, as mathematically expressed in (10), four 
kinds of representative and objective features are deter-
mined and arranged in the order of bus voltage magni-
tude, bus phase angle, and active and reactive power of 
the transmission line, as:

where m represents the number of nodes in the network 
and t represents the number of transmission lines. All 
elements of X are vectors with the dimension of d which 
means the number of sampling points.

3.2 � Normalization preprocessing of original input
Common normalization methods include maximum and 
minimum, mean standard deviation, and so on. In this 
paper, mean standard deviation normalization is adopted 
to preprocess the original input, formulated by:

The normalization object of (11) is each vector element 
in (10), such as V1, θ1, P1, and Q1. x represents each ele-
ment in the vector, and xnormal is the normalized result of 
x. xmean denotes the average value of all elements in the 
corresponding vector, while xstd represents the stand-
ard deviation of all elements in the vector. Taking P1 as 
an example, P1 is a vector with d sampling points, while 
xmean and xstd are the average value and the standard devi-
ation of active power regarding d elements, respectively. 
After normalization, all x from P1, i.e., active power at 
each time of the transmission line, are uniformly com-
pressed to 0–1.

3.3 � Stability criterion
TSA applying neural network is essentially a classifica-
tion problem, which needs to label all samples in a huge 
data set. 0 and 1 are used to label the stable samples and 
unstable samples, respectively. For a system with large 
numbers of generators subjected to a large disturbance, 
the power angle of each generator in the post-distur-
bance period can be used to compute the transient sta-
bility index (TSI) [10, 16, 19]. The TSI formula and label 
methodology are given respectively as:

(10)

X = [V1,V2, . . . ,Vm, θ1, θ2, . . . , θm,P1,P2, . . . ,Pt ,

Q1,Q2, . . . ,Qt ]

(11)xnormal =
x − xmean

xstd

(12)TSI =
360◦ − |�δmax|

360◦ + |�δmax|

(13)Label =

{
1 TSI < 0

0 TSI > 0

where Δδmax represents the maximal power angle differ-
ence between any two generators. If |Δδmax| is greater 
than 360° (TSI < 0), the power system loses stability, and 
the corresponding sample is marked as 1. In the converse 
case, the sample is marked with 0.

To ensure the correctness and reliability of sample labe-
ling during simulation, the power angles of generators are 
selected at least 8 s after fault removal to compute TSI.

3.4 � The improved FL function
To clearly explain the improved FL function, the FL func-
tion and the binary cross entropy (BCE) function are 
introduced. The BCE function is the foundation of the FL 
function and is expressed by:

where y and y’ are defined as the real label and the classi-
fication probability, respectively. 0 and 1 represent stable 
samples and unstable samples, respectively.

The FL function expressed by (15) advances the BCE 
function, and this reduces the weight of easily classified 
samples and improves the fitting degree of difficult to 
classify samples.

In (15), α and γ are introduced to lfl. γ is used to 
address the problem that the classification difficulty 
regarding different samples is unequal. When y’ is 
exceedingly close to the classification threshold, the 
corresponding sample is defined as difficult to classify 
samples and more prone to misclassification. When 
y’ greatly differs from the classification threshold, 
the sample is defined as an easily classified sample. γ 
improves the weight of difficult to classify samples in 
the loss function and reduce the weight of easily clas-
sified samples, so as to better fit the difficult to classify 
samples.
α is to balance the number of stable and unstable 

samples. As for the TSA problem, the number of sta-
ble samples is larger than that of unstable samples. In 
order to balance samples, previous studies [19, 22] set a 
fixed α. This entails a large number of time-consuming 
experiments to obtain an appropriate α. Moreover, the 
generalization ability of the model is restricted and the 
engineering efficiency is low. To address the problem, 
an improved FL function is shown as:

(14)LBCE =

{
− ln y′ y = 1

− ln(1− y′) y = 0

(15)lfl =

{
−α(1− y′)γ ln y′ y = 1

−y′γ ln(1− y′) y = 0
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Here, a mini-batch training method [25] is adopted 
and α can be adjusted adaptively in each mini-batch 
training. This is a kind of simplified stochastic gradi-
ent descent (SGD) algorithm [26]. Every time a con-
stant training instance is completed, the parameters 
are updated. Each parameter update is related, and 
this can improve the fitting degree of the neural net-
work to data. S1 and S2 represent the number of sta-
ble and unstable samples in each mini-batch data set, 
respectively. Therefore, α can be adjusted automatically 
according to the proportion of stable and unstable sam-
ples in each mini-batch training. This greatly reduces 
unnecessary parameter adjustment processes.

3.5 � Model evaluation index
In this paper, four kinds of typical indices are taken as 
TSA performance indices, and the corresponding for-
mulas are given by:

accuracy, denoted by Acc is the most commonly used TSA 
index, which intuitively evaluates the classification abil-
ity of the model. Precision, Pre, measures the proportion 

(16)
Lfl = −

1

S

S∑

i=1

[αy(1− y′)γ ln y′

+ y′γ (1− y) ln(1− y′)]

(17)α = S1/S2

(18)S = S2 + S1

(19)Acc =
TP + TN

Tp + FP + TN + FN

(20)Pre =
TN

TN + FN

(21)Rec =
TN

TN + FP

(22)F1 =
2PreRec

Pre + Rec

of the number of real unstable samples in the classi-
fied unstable samples, while recall rate Rec measures the 
proportion of the number of unstable samples correctly 
classified in the data set. Because of the contradictory 
relationship between Pre and Rec, F1 is used to weigh the 
two indices.
TP and TN refer to true stable and true unstable samples, 

respectively, whereas FP and FN refer to false stable and 
false unstable samples. The relationship between them is 
shown in Table 1.

If an unstable sample is misclassified as a stable sam-
ple, there will be disastrous consequences. In contrast, 
if a stable sample is misclassified as an unstable sample, a 
false alarm will appear but it will not cause huge damage 
to power grid operation. Therefore, FP is more important 
than FN.

3.6 � Classification threshold
The selection of the classification threshold is of high sig-
nificance to the indices of Pre and Rec. Because FP is more 
important than FN, it is crucial to reduce the number of 
FP. Improving the classification threshold can effectively 
enhance the conservatism of the model and reduce the 
number of FP, so as to improve Rec of unstable samples. The 
threshold formula is shown as:

The initial threshold value γ is 0.5. This paper improves 
the recall rate of unstable samples by manually adjusting 
γ.

4 � Simulation verification
4.1 � Data set acquisition
In order to verify the effectiveness of the proposed 
methods, simulation verification is carried out on the 
IEEE 39-bus system and IEEE 145-bus system. The IEEE 
39-bus system is composed of 39 bus nodes and 46 
branches, while the IEEE 145-bus system consists of 145 
bus nodes and 453 branches.

To obtain the most representative data set with suffi-
cient data, a degree of freedom in statistics realm is intro-
duced and previous work [19, 22] is fully studied. First, 
a degree of freedom is adopted to guide the amount of 
data to be generated. Degree of freedom applied to the 
TSA problem refers to the required minimum sample 
quantity to obtain a model that fully fits the data set. 
Here, the training data set is defined as control points to 
control the adjustment trend about network parameters, 
and the model parameters are defined as observation 
points to observe and output the final TSA results. The 
ratio is 0.928 on the IEEE 39-bus system and 0.933 on the 

(23)y =

{
0 PZ(C0|X) ≤ γ ,PZ(C1|X) > 1− γ

1 PZ(C0|X) ≥ γ ,PZ(C1|X) < 1− γ

Table 1  The confusion matrix

Prediction label (y’) Real label (y)

Stable Unstable

Stable TP FP

Unstable FN TN
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IEEE 145-bus sytem, both of which are larger than 0.9 to 
ensure the quantity of sample data in the obtained data 
set. Secondly, based on [19, 22], four factors of branches, 
fault locations, fault durations and load burdens, are 
taken into consideration to ensure the representation of 
the obtained data set.

The TDS parameters settings of the IEEE 39-bus sys-
tem for Power System Simulator/Engineering (PSS/E) are 
shown in Table  8 in the Appendix. The simulation set-
tings of the IEEE 145-bus system are consistent except 
that the fault lines are different from Table  8. During 
the TDS, Python API of PSS/E is used to repeatedly call 

PSS/E to implement batch transient simulation. The 
obtained data set on the IEEE 39-bus system contains 
14,280 samples and the number of stable and unstable 
samples are 11,200 and 3080 respectively, so the ratio of 
stable samples to unstable samples is approximate 3.6:1. 
Similarly, the obtained data set on the IEEE 145-bus sys-
tem consists of 169,260 samples, while the ratio of stable 
and unstable samples is 5:1. To ensure the correctness 
and reliability of sample labeling, the sample label is ulti-
mately completed by calculating the TSI value at 10 s. All 
of the obtained data sets are divided into training, cross 
validation and test data sets according to the ratio of 
3:1:1.

Fig. 4  The overall TSA process

Fig. 5  Learning curve on the IEEE 39-bus system
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4.2 � TSA procedure
The overall TSA procedure, expressed by Fig.  4, mainly 
consists of two stages, i.e., offline training and online 
application. At the offline training stage, the obtained 

data set is divided into training, cross validation and test 
data sets, and is used to optimize the MP CNN + GRU. 
The training data set is used to conduct parameter fitting 
and adjustment of the original model, while the cross val-
idation data set is to foresee the TSA performance of the 

Fig. 6  Learning curve on the IEEE 145-bus system

Table 2  TSA performance on the IEEE 39-bus system

Method Acc (%) Pre (%) Rec (%) F1

ANN 96.95 90.28 92.29 0.9127

SVM 96.32 96.72 81.94 0.8872

DT 95.97 90.61 86.11 0.8830

RF 96.57 92.12 88.10 0.9006

GRU [11] 97.72 94.01 93.08 0.9354

1D-CNN [19] 98.74 96.25 96.63 0.9644

CNN + GRU​ 98.91 97.02 96.83 0.9692

MP CNN + GRU​ 99.40 98.40 98.21 0.9831

Table 3  TSA performance on the IEEE 145-bus system

Method Acc (%) Pre (%) Rec (%) F1

ANN 96.83 91.32 93.11 0.9220

SVM 96.81 95.62 85.94 0.9052

DT 92.97 93.61 87.11 0.9024

RF 95.57 93.82 88.55 0.9110

GRU [11] 96.72 93.66 93.20 0.9343

1D-CNN [19] 98.66 95.85 95.97 0.9591

CNN + GRU​ 98.83 97.32 96.91 0.9711

MP CNN + GRU​ 99.32 98.11 97.88 0.9799

Table 4  TSA result of a single sample on the IEEE 39-bus system

Model I II
Prediction results

P1 (C0|X) 0.496 0.488

P2 (C0|X) × 0.524

P3 (C0|X) × 0.510

Pz (C0|X) 0.496 0.507

Prediction label 0 1

Real label 1 1

Table 5  TSA result of a single sample on the IEEE 145-bus 
system

Model I II
Prediction results

P1 (C0|X) 0.511 0.508

P2 (C0|X) × 0.487

P3 (C0|X) × 0.498

Pz (C0|X) 0.511 0.497

Prediction label 1 0

Real label 0 0
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trained model, and more importantly, further complete 
parameter adjustment. At the online application stage, 
the trained model is put into practical application on the 
test data set.

4.3 � Model training process
Figures 5 and 6 show the learning curves on the test and 
training data sets of the IEEE 39-bus system and IEEE 
145-bus system. They indicate that, in the last stage of 
training iteration, the value of the blue line is higher 
than that of the red line, while the loss value of the red 
line is very low and approximately 0. However, the loss 
value concerning the red line is conversely higher than 
that of the blue line on the test data set. Therefore, the 
over-fitting phenomenon occurs but it can be greatly 
alleviated by the dropout method. After a large number 
of experiments, both dropout rates are determined as 
0.2 on the IEEE 39-bus system and IEEE 145-bus sys-
tem. Most significantly, the overfitting case also indi-
cates that the quantity of the generated sample data is 
enough for both the IEEE 39-bus system and IEEE 145-
bus system.

The parameter settings of the MP CNN + GRU on the 
IEEE 39-bus system and IEEE 145-bus system are shown 
in Tables 9 and 10 in the Appendix, respectively.

4.4 � Classification performance comparison
In order to demonstrate the superior TSA capability 
of MP CNN + GRU, the proposed model is compared 
with other methods in the ML realm, including ANN, 
SVM, DT, random forest (RF), GRU [11], 1D-CNN [19], 
CNN + GRU. For the model fed with one-dimensional 
vector, such as SVM, the two-dimensional original input 
is transformed. The data sets used for training and testing 
of each model are kept consistent with MP CNN + GRU. 
The dropout rate of ANN is also 0.2, and the activa-
tion function adopts ReLU, to be consistent with MP 
CNN + GRU. Eventually, the ANN structure with the 
best data-fitting performance is 300–300-150–100-1. 
Because a computation divergence phenomenon emerges 
from SVM, DT and RF during the simulation process, the 
principal component analysis (PCA) method is adopted 
to perform dimension reduction. TSA results of the mod-
els are shown in Tables 2 and 3.

The following observations can be drawn from the sim-
ulation results:

Fig. 7  TSA analysis results on the IEEE 39-bus system

Fig. 8  TSA analysis results on the IEEE 145-bus system

Fig. 9  TSA results on the test data set of the IEEE 39-bus system

Fig. 10  TSA results on the test data set of the IEEE 145-bus system
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(1)	 Compared with the other four types of methods, 
ANN, SVM, DT and RF have defective TSA per-
formance. ANN has the highest Acc, up to 96.95% 
and 96.83%, respectively. However, Pre of ANN, 
being 90.28% and 91.32%, are unacceptable, which 
indicates that ANN is not accurate enough to clas-
sify unstable samples. Although the DT-based RF 
algorithm has slightly better TSA performance than 
DT, its Rec of 88.10% on the IEEE 39-bus system and 
88.55% on the IEEE 145-bus system are too low.

(2)	 CNN + GRU has outstanding TSA performance. As 
for the IEEE 39-bus system, compared with GRU 
in [11] and 1D-CNN in [19], Rec is the index with 
the greatest improvement of 3.75%. As for the IEEE 
145-bus system, Rec, also has the largest improve-
ment index, rising from 93.20% to 96.91%.

(3)	 MP CNN + GRU performs well in both test power 
systems and further improves the TSA perfor-
mance of CNN + GRU. The accuracy rates, 99.40% 
and 99.32%, are maintained above 99%. Thus, MP 
CNN + GRU has excellent TSA performance.

4.5 � MP CNN + GRU’s TSA performance
To probe the reason for the TSA performance improve-
ment of MP CNN + GRU compared with CNN + GRU, 
we perform an in-depth study about the classification 
ability of the proposed model on the IEEE 39-bus system 
and IEEE 145-bus system from two perspectives: TSA 
result of an individual sample and TSA results on the test 
data set.

4.5.1 � TSA result analysis of a single difficult to classify 
sample

Tables  4  and  5 demonstrate the TSA result of a sin-
gle difficult to classify sample on the IEEE 39-bus sys-
tem and  IEEE 145-bus system, where I and II represent 
CNN + GRU and MP CNN + GRU, respectively.

The real label of the researched sample on the IEEE 
39-bus system is 1. However, the TSA result of the sin-
gle CNN + GRU is 0 and differs from the real label. Thus, 
there is a misclassification phenomenon, which can cause 
serious consequences for the operation of the power sys-
tem. By comparison, because the distinct multi-parallel 
structure of MP CNN + GRU can simultaneously output 
three TSA results of 0.488, 0.524 and 0.510, the final anal-
ysis result is 1. Thus, MP CNN + GRU effectively avoids 
the misclassification of unstable samples into stable sam-
ples, and ensures the reliability and correctness of TSA.

Similarly, MP CNN + GRU on the IEEE 145-bus system 
avoids the sample misclassified into an unstable sample. 
In summary, for TSA of a single sample, the superiority 
of MP CNN + GRU is mainly reflected on its strong clas-
sification capability regarding difficult to classify samples 
around the classification threshold.

4.5.2 � TSA result analysis of difficult to classify samples 
on the test data set

After a series of final screening, it is found that there 
are 40 difficult to classify samples, accounting for about 
1.40% of the total samples on the test data set for the 
IEEE 39-bus system and 406 difficult to classify sam-
ples for the IEEE 145-bus system. Figures 7 and 8 show 
the corresponding TSA results of MP CNN + GRU and 
CNN + GRU. The results indicate that MP CNN + GRU 
greatly reduces the number of misclassified samples 
and improves TSA accuracy. The numbers of FN and FP 
are reduced from 15 to 7 and from 16 to 8 for the IEEE 
39-bus system, while for the IEEE 145-bus system they 
are reduced from 238 to 21 and from 48 to 8. Thus, it 
proves that MP CNN + GRU has distinctive TSA classifi-
cation capability in practical application.

Fig. 11  TSA performance with different classification thresholds
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4.6 � TSA results analysis of the improved FL function
To verify the effectiveness of the improved FL, FL and 
improved FL are adopted as loss functions to train MP 
CNN + GRU, respectively, whereas the data sets applied 
in training and testing remain unchanged. Figures 9 and 
10 show the confusion matrices of the two models on 
the test data set. By contrast, α in the improved FL has 
no parameter adjustment process and only γ needs to be 
adjusted continuously.

Clearly, improved FL can balance samples and 
enhance the fitting degree of unstable samples. Reduc-
ing FP makes a real difference to alleviating damage to 
the power system. Additionally, the simulation demon-
strates that the improved FL can simplify the tedious 
experimental process and meaningfully build up engi-
neering efficiency.

4.7 � TSA results with different classification thresholds
For a power system with highly nonlinear characteris-
tics, the classification information that TSA model needs 
to acquire has great complexity and the trained model 
cannot achieve 100% classification accuracy. The MP 
CNN + GRU proposed in this paper can make the TSA 
accuracy reach a very high level by virtue of its distinct 
multi-synchronization, short-term and long-term fea-
ture extraction structure. After training, the classification 
threshold γ can be manually modified to reduce the mis-
classification phenomenon and improve the recall rate.

Figure  11 illustrates the TSA results with different 
thresholds on the IEEE 39-bus system and IEEE 145-
bus system.

(1)	 With the increasing value of γ, Pre decreases and 
Rec increases. Both Acc and F1 show a tendency of 
slightly increasing and then decreasing. When γ 

Fig. 12  t-SNE result on the IEEE 39-bus system

Table 6  Comparison of computation speed on the IEEE 39-bus 
system

Simulation comparison III IV (s) V (ms) Acc (%)
Model

GRU [11] 2856 2.18 0.763 97.72

1D-CNN [19] 2856 2.31 0.809 98.74

CNN + GRU​ 2856 2.70 0.945 98.91

MP CNN + GRU​ 2856 3.22 1.127 99.40

Table 7  Comparison of computation speed on the IEEE 145-bus 
system

Simulation comparison III IV/s V/ms Acc/%
Model

GRU [11] 33,852 40.622 1.200 96.72

1D-CNN [19] 33,852 44.006 1.301 98.66

CNN + GRU​ 33,852 49.381 1.458 98.83

MP CNN + GRU​ 33,852 80.312 2.372 99.32



Page 12 of 16Cheng et al. Protection and Control of Modern Power Systems            (2022) 7:39 

equals to 0.5, Acc and F1 synchronously reach the 
maximum values of 99.40% and 0.9831 on the IEEE 
39-bus system, and 99.32% and 0.9799 on the IEEE 
145-bus system, respectively.

(2)	 γ with too high or too low value can incur the 
reduction of Acc, resulting in frequent misclassifica-
tion and the decline of classification ability, which 
is not suitable for online TSA. It is worth noting 
that when γ is 0.9, Pre declines to the lowest value. 
Unacceptable Pre leads to frequent false alarms in 
the power system. When γ equals 0.1, Rec reaches 
the minimum. Too low a recall rate causes a series 
of disastrous consequences. It can be inferred from 
Fig. 11 that when γ is 0, Pre reaches 100%. On the 
other hand, when γ is 1, Rec equals 100%. But select-
ing 0 or 1 as the classification threshold gives no 
contribution to the online application.

(3)	 The varying γ exerts enormous impact on both Pre 
and Rec, while it has small impact on Acc and F1. The 
resulting variation ranges regarding Pre and Rec are 
approximately 6.30% and 5.00% on the IEEE 39-bus 
system, and 6.6% and 4.7% on the IEEE 145-bus sys-
tem, respectively. Acc almost keeps unchanged with 
a tiny variation range of 0.9% on the IEEE 39-bus 
system and 1.1% on the IEEE 145-bus system. F1 is 
approximately 0.023 on the IEEE 39-bus system and 
0.020 on the IEEE 145-bus system.

Thus, after training MP CNN + GRU with high accu-
racy, manually modifying and adjusting the classification 
threshold can improve the recall rate concerning unsta-
ble samples, reduce the misclassification phenomenon 
and ensure the conservatism of the model in practical 
application.

4.8 � Visualization analysis of MP CNN + GRU’s classification 
ability

To enhance the TSA interpretability of the model per-
formance, t-distributed stochastic neighbor embedding 
(t-SNE) [27, 28], as a kind of visualization algorithm, is 
introduced to show the sample-processing procedure. 
The distance for the points with great similarity in low-
dimensional space is closer after t-SNE. On the con-
trary, the distance for the points with less similarity is 
large.

The t-SNE algorithm is to convert the Euclidean dis-
tance of high-dimensional data into conditional prob-
ability to express the similarity between each sample. The 
obtained conditional probability is:

where S(xi, xj) represents the similarity between i and j. 
Then, the PCA method is used to reduce the data dimen-
sion and to retain the most representative characteristics 

(24)

P(j|i) =
S(xi, xj)∑n

k=1,k �=i S(xi, xj)
j �= i, i = 1, 2, . . . , n

Fig. 13  t-SNE result on the IEEE 145-bus system
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of each sample. The conditional probability between each 
sample after dimension reduction is as follows:

where S’(zi, zj) represents the similarity between i and j 
after dimensional reduction. The closer the distance is, 
the more similar the two samples are.

As for the TSA problem, stable samples have the same 
properties, and unstable and stable samples have differ-
ent properties so the distance between stable samples 
is relatively short after t-SNE. By comparison, the dis-
tance between stable samples and unstable samples is 
long (Figs. 12 and 13).

4.9 � Computational speed analysis about MP CNN + GRU​
In order to further verify the superior TSA performance 
of MP CNN + GRU, its calculation speed is fully ana-
lysed in this section. MP CNN + GRU is compared with 
1D-CNN in [19] and GRU in [11]. The simulation results 
of the calculation efficiency and TSA accuracy are shown 
in Tables 6 and 7.

Here, III represents the number of samples on the test 
data set. IV and V mean the TSA time of all the sam-
ples on the test data set and TSA time of each sample, 
respectively. It can be seen from Tables 6 and 7 that the 
computational speed with respect to all of the models can 
be fully satisfied with the TSA requirement. Although 
the speed of GRU and 1D-CNN is faster than that of 
CNN + GRU and MP CNN + GRU, the Acc of GRU and 
1D-CNN is lower than that of CNN + GRU and MP 
CNN + GRU. Additionally, the calculation speed of 
CNN + GRU is slightly slower than GRU and 1D-CNN 
because of its complicated dual construction. Finally, 
within the reasonable range, MP CNN + GRU obtains 
better TSA performance at the expense of computational 
speed and the calculation efficiency of MP CNN + GRU 
on the IEEE 145-bus system is half that of the IEEE 
39-bus system, because the input dimension of the IEEE 
145-bus system has much more complexity. This brings 
great difficulty for MP CNN + GRU to implement data 
analysis. Thus, MP CNN + GRU is a practical method in 
engineering application.

5 � Conclusions
In this paper, a TSA method of CNN + GRU, which 
is based on CNN and GRU, is proposed. The MP 
CNN + GRU is then formed by parallel connection of 

(25)

Q(j|i) =
S′(zi, zj)∑n

k=1,k �=i S
′(zi, zj)

j �= i, i = 1, 2, . . . , n

multiple CNN + GRU, so that the classification accu-
racy of the difficult to classify samples can be advanced. 
Finally, the improved FL function which can implement 
self-adaptive adjustment is proposed to guide model 
training. The proposed methods are verified by simula-
tions on the IEEE 39-bus system and IEEE 145-bus sys-
tem. The conclusions are as follows:

(1)	 Compared with other AI algorithms and single 
CNN and GRU algorithms, CNN + GRU can fully 
extract the high-order features from the micro 
short-term and macro long-term perspectives, and 
build the mapping relationship between the origi-
nal input and the system stability labels. This gives 
better TSA performance. Its TSA accuracy is up to 
98.91% on the IEEE 39-bus system and 98.83% on 
the IEEE 145-bus system.

(2)	 MP CNN + GRU can simultaneously provide mul-
tiple TSA through its unique multi-parallel struc-
ture. For the TSA result of a single sample, MP 
CNN + GRU has a certain error correction ability. 
For TSA on a large number of samples, it can sig-
nificantly improve the precision and recall rate con-
cerning unstable samples. These two indices are as 
high as 98.40% and 98.21% on the IEEE 39-bus sys-
tem, and 98.11% and 97.88% on the IEEE 145-bus 
system. Thus, MP CNN + GRU has distinctive TSA 
performance.

(3)	 The improved FL function can not only avoid the 
cumbersome parameter adjustment process and 
enhance the engineering efficiency in practical 
application, but also build up the TSA accuracy 
regarding unstable samples and relieve the dis-
astrous impact of misclassification on the power 
system. The simulation also indicates that α has no 
parameter adjustment process.

However, this paper has not considered the TSA per-
formance with single or multiple noisy original inputs. 
Future research will focus on how to ensure high TSA 
accuracy of the model with noisy original inputs and 
the TSA method for optimal PMU configuration of the 
power system considering economic project cost.

Appendix
See the Tables 8, 9 and 10.
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Table 8  The parameter setting of PSS/E batch transient simulation on the IEEE 39-bus system

Types of parameters Parameter values Parameter 
quantity

System frequency (Hz) 60 1

Fault-applied transmission line 1–2, 1–39, 2–3, 2–25, 3–4, 3–18, 4–5, 4–14, 5–6, 5–8, 6–7, 6–11, 7–8, 8–9, 9–39, 10–11, 10–13, 
13–14, 14–15, 15–16, 16–17, 16–19, 16–21, 16–24, 17–18, 17–27, 21–22, 22–23, 23–24, 
25–26, 26–27, 26–28, 26–29, 28–29

34

Load burden 80%, 90%, 100%,110%, 120% 5

Fault location 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9 7

Fault duration time (second) 6/60, 8/60, 10/60, 12/60, 14/60, 16/60, 18/60, 20/60, 22/60, 24/60, 26/60, 28/60 12

Fault type Three-phase short circuit 1

Table 9  The parameter setting of MP CNN + GRU on the IEEE 39-bus system

CNN branch Quantity/function

Time sequence dimension 34

Input feature dimension 170

Convolution layer 3/ReLU

Convolution kernel size 5 × 5

Convolution kernel Quantity 64

Pooling layer 3

Pooling size 3 × 3

Pooling method Max-pooling

Full connection layer units 128

Dropout rate 0.2

GRU branch Quantity/function

Time dimension(s) 34

Input feature dimension(d) 170

GRUs 128

Full connection layer units 128

Dropout rate 0.2

Full connection layer Quantity/function

Layers 3/ReLU

Units on the first layer 128

Units on the second layer 64

Units on the last layer 1

Loss function Improved FL

Optimizer Adam

Initial learning rate 4 × 10–3

The first decay rate (β1) 0.8

The second decay rate (β2) 0.5

Epsilon (ε) 2 × 10–9

Total parameters of the model 3078
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Table 10  The parameter setting of MP CNN + GRU on the IEEE 145-bus system

CNN branch Quantity/function

Time sequence dimension 34

Input feature dimension 1096

Convolution layer 5/ReLU

Convolution kernel size 7 × 7

Convolution kernel Quantity 128

Pooling layer 5

Pooling size 5 × 5

Pooling method Max-pooling

Full connection layer units 128

Dropout rate 0.2

GRU branch Quantity/function

Time dimension(s) 34

Input feature dimension(d) 1096

GRUs 256

Full connection layer units 256

Dropout rate 0.2

Full connection layer Quantity/function

Layers 3/ReLU

Units on the first layer 128

Units on the second layer 64

Units on the last layer 1

Loss function Improved FL

Optimizer Adam

Initial learning rate 4 × 10–3

The first decay rate (β1) 0.8

The second decay rate (β2) 0.5

Epsilon (ε) 2 × 10–9

Total parameters of the model 36,284
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