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A simple decision tree-based disturbance 
monitoring system for VSC-based HVDC 
transmission link integrating a DFIG wind farm
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Abstract 

Fault detection and classification is a key challenge for the protection of High Voltage DC (HVDC) transmission lines. 
In this paper, the Teager–Kaiser Energy Operator (TKEO) algorithm associated with a decision tree-based fault classi-
fier is proposed to detect and classify various DC faults. The Change Identification Filter is applied to the average and 
differential current components, to detect the first instant of fault occurrence (above threshold) and register a Change 
Identified Point (CIP). Further, if a CIP is registered for a positive or negative line, only three samples of currents (i.e., 
CIP and each side of CIP) are sent to the proposed TKEO algorithm, which produces their respective 8 indices through 
which the, fault can be detected along with its classification. The new approach enables quicker detection allowing 
utility grids to be restored as soon as possible. This novel approach also reduces computing complexity and the time 
required to identify faults with classification. The importance and accuracy of the proposed scheme are also thor-
oughly tested and compared with other methods for various faults on HVDC transmission lines.

Keywords: Change Identification Filter, Differential current, DC faults, Simple Decision Tree, Fault classifier, HVDC 
transmission link, Renewable Energy, TKEO algorithm
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1 Introduction
Almost all industrial processes, as well as various 
aspects of daily life, rely on electrical energy or electric-
ity [1, 2]. Electricity consumption is ever increasing, 
and in particular energy demands are even higher dur-
ing peak hours, making it difficult to guarantee supply 
to consumers [1]. The adoption of distributed energy 
resources(DER), such as wind, solar, and fuel cells, has 
been proved to be a realistic alternative given several 
concerns, including rising energy consumption, exhaus-
tion of conventional energy resources (such as fossil fuels 
and coal) and pollution [3]. Addressing the above prob-
lem, integrated wind farms have been proposed. HVDC 
transmission systems outperform HVAC transmission 

systems in high power ratings [4]. The losses in HVAC 
transmission lines increase as transmission distance 
increases because of increased resistance, inductance and 
capacitance [5], and thus the transmission efficiency is 
reduced for long transmission length while the skin effect 
and corona loss are also observed in HVAC [6, 7].

The use of an HVDC transmission system addresses 
the above mentioned loss issue. One of the most critical 
issues in an HVDC transmission system is fault identi-
fication and classification [3].The entire power system 
could fail if the fault current on the HVDC transmis-
sion link is not interrupted for an extended period. It 
is challenging to distinguish the faulty system from the 
healthy components if proper methodology is not used 
[8, 9]. To restore system stability and limit economic 
losses, the type of fault and its classification on the 
transmission line should be determined as soon as pos-
sible. The purpose of this study is to detect and exam-
ine the four types of faults that can occur on HVDC 
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transmission lines and to evaluate the robustness of the 
Teager–Kaiser Energy Operator (TKEO) algorithm 
with a Simple Decision Tree-based mechanism for 
accurate results with low computing complexity and a 
reduced time for fault identification, and classification.

2  Literature review
For HVDC transmission systems, many fault detec-
tion and classification approaches have been proposed. 
However, because of the aforementioned problems, 
techniques for protecting HVDC transmission lines 
are more limited than methods for conventional trans-
mission systems [10]. A detailed literature review is 
provided here to have a better understanding of the 
proposed fault detection and classification methods for 
HVDC transmission lines. From the survey, a gap in the 
available fault detection and classification systems for 
HVDC transmission lines is identified. As fault detec-
tion and classification methods in HVDC transmission 
lines are influenced by a variety of parameters, these 
factors are investigated from several perspectives, with 
each one being examined separately. To ensure a fair 
review, the methods are divided into two categories, i.e. 
model-based and data-driven-based strategies.

2.1  Group A: data‑driven‑based techniques
Examining data pertinent to a system or determin-
ing the relationship between input and output state 
variables are the roots of data-driven approaches [11]. 
Because of the complexity of and necessity for a large 
quantity of data, real-time protections based on these 
technologies are not commonly used in HVDC trans-
mission lines [12]. However, because of a lack of deep 
knowledge of the system, these methods are sometimes 
adopted to detect abnormalities that model-based 
methods may not be able to detect.

2.1.1  Fuzzy‑based techniques
For fault identification in an HVDC transmission line, 
a combination of wavelet singular entropy and fuzzy 
logic is described in [13]. Similarly, in [14, 15], dif-
ferential protection techniques based on fuzzy infer-
ence processors are proposed. However, the following 
are some of the challenges associated with the fuzzy 
method in fault detection and classification:

 (i) Finding accurate membership functions and fuzzy 
rules is difficult;

 (ii) To evaluate and validate the fuzzy-based system, 
extensive hardware testing is required.

2.1.2  Decision tree and ANN‑based techniques
To detect the faults, reference [16] employs local cur-
rent measurements with wavelet transform and a 
decision tree. In addition, for fault classification, a 
sequence analyzer is employed to extract negative and 
zero sequence components. For HVDC transmission 
lines, a data-mining-based technique on two decision 
trees is described in [17], and artificial neural networks 
(ANNs) are used to detect and classify faults in HVDC 
transmission lines in [18]. The current signal is sent to 
two distinct ANNs that have been trained to detect and 
classify faults in [19]. However, the following are some 
of the potential drawbacks of using these methods:

 (i) Extensive data are necessary for the training stage;
 (ii) There may be inadequate (or missing) training data 

to derive estimates in the majority of cases.

2.2  Group B: model‑based techniques
Model-based approaches aim to determine if the evalu-
ated variables are consistent with the model, in [20]. 
These methods can be further categorized based on the 
detection method used to identify the fault in various 
modes of operation [21].

2.2.1  Differential‑based techniques
In [22], a differential protection strategy is proposed, in 
which two time–frequency transformations, i.e., Hil-
bert_Huang and the S-Transform, are compared to cal-
culate the difference in the spectral energy content of 
modified contours on two sides of a feeder. Using the 
average cumulative sum and transient estimation meth-
ods, a differential transient current-based fault detec-
tion method for HVDC transmission lines is proposed 
in [23]. The following are the primary issues that differ-
ential-based techniques face:

 (i) In the event of a communication breakdown, 
backup protection is needed to protect the HVDC 
transmission line;

 (ii) The system cost increase as a result of the commu-
nication systems.

2.2.2  Local variable‑based methods
In [24], the loop type HVDC transmission lines are pro-
tected using the inherent characteristics of the local 
variable current and its derivation. The inverter output 
current is used as a local variable to calculate the recur-
sive least squares and mathematical morphology (MM). 
However, the local variable-based approaches, in gen-
eral, have some drawbacks:
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 (i) Failure of the protection used in the HVDC trans-
mission line can cause changes in local factors;

 (ii) They are highly dependent on the HVDC transmis-
sion line design, where most techniques are devel-
oped and proven for specific HVDC transmission 
lines;

 (iii) Performance may suffer the consequences of time 
delays, as the time required for fault identification 
is dependent on the fault type and variable magni-
tude at the defective feeder.

2.2.3  Adaptive methods
The updated mode of operation is checked at the relay 
point in adaptive-based approaches when the configura-
tion changes. Current signals are obtained with current 
transformers (CTs) in [25] and compared using the cycle- 
by-cycle comparison method. The following are the key 
drawbacks for adaptive approaches:

 (i) When the HVDC transmission system changes 
between different modes of operation, it is nec-
essary to re-adjust the settings of the protection 
devices;

 (ii) It is costly to use communication channels for set-
ting updates and monitoring;

 (iii) All feasible HVDC transmission configurations 
must be known prior to operation.

2.2.4  Traveling wave‑based techniques
In [26], a traveling wave-based protection mechanism 
based on MM is proposed. Because MM technology only 
executes a few summations and subtractions, the intro-
duced approach offers quick fault detection. However, 
high sampling-rate measuring equipment is required for 
traveling wave-based approaches. Although these pro-
cedures are quick and accurate, using high sampling-
rate measurement instruments significantly reduces the 
benefits.

2.3  Aims and contribution
The aim of the proposed method is quicker detection and 
classification of the fault and to reduce computational 
complexity. A novel protection mechanism for HVDC 
transmission lines is proposed to detect and classify dis-
turbances. When there is no fault, the differential current 
is zero, while it varies when there is a fault.

The method begins with the calculation of differen-
tial and average  currents when CIP is identified. The 
numerical values at different faults are determined using 
a TKEO-based scheme in the next stage.The method is 
based on the “Teager Energy” tracked by the TKEO algo-
rithm. The 8 indices are extracted from “Teager Energy”. 

In addition, TKEO calculates only three samples of data 
(at CIP and either side of CIP), resulting in a low comput-
ing burden and good time resolution. The next step is to 
generate eight separate indices based on "Teager energy” 
of  differential and average currents to distinguish faulty 
from healthy sections, as well as the type of fault and the 
faulty line. Simulation and experimental systems are used 
to test the proposed method. The following are the main 
contributions of the proposed method:

 (i) Processing only the current signal with simple 
rules;

 (ii) Low computing burden and cost efficiency because 
no communication lines are required;

 (iii) When evaluating the procedure, it takes into 
account a variety of challenging conditions.

3  Research gaps identified
Following a review of the literature, the following 
research gaps for fault analysis of an HVDC transmission 
system are identified:

• Distributed energy sources (DER)  are the future of 
electricity production, but research on how to trans-
mit this energy through HVDC lines with different 
design models is limited.

• A few studies used raw signal data processing units, 
which take much longer to analyse the fault classifi-
cation and fault detection.

• According to several studies, the fault detection effi-
ciency is limited to around 83%. Data is generated by 
a limited number of algorithms, and this may mislead 
the entire system.

• Several studies have concentrated on short distance

HVDC lines only.

• The majority of studies fail to account for the com-
putational burden and time required to diagnose the 
fault with classification.

• For fault analysis, very few little research has concen-
trated on the noise interface defective signal issue.

3.1  Novelties of the paper
The above-mentioned research gaps must be addressed 
to acquire the exact identification of faults as well as the 
classification of the HVDC transmission system. The gaps 
and limits described above must be addressed to conduct 
a realistic fault analysis of an HVDC transmission line. In 
contrast, the technique proposed can allow quick identi-
fication of the type of fault corresponding with classifica-
tion in HVDC transmission link, as:
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• The required time to detect the fault and its classifi-
cation is only about 10 ms.

• The efficiency is improved to 98.75% in terms of pre-
cise fault type and classification.

• For the first time in an HVDC transmission system, 
the study uses the TKEO method in combination 
with a Simple Decision Tree-based fault classifier for 
fault analysis.

• The proposed strategy overcomes the disadvantages 
in existing methods, such as computational complex-
ity and requiring a long time to find the fault with 
classification.

• When performing a fluctuating DC analysis, deter-
mining the magnitude of the threshold setting value 
is quite challenging.

4  Description of the designed model
Figure 1 depicts a single line diagram of a bipolar HVDC 
transmission system using a Voltage Source Converter 
(VSC) that is fed by a combination of offshore wind 
farms.

As can be seen 150  km HVDC transmission lines are 
presented. The fault analysis performed on the 150  km 
HVDC transmission line is the topic of this research. The 
HVDC system is fed by a wind farm of four units where 
each unit has a capacity of 9  MW. Each unit has 6 sub 
units of capacity1.5 MW i.e. 6 × 1.5 = 9 MW. So the total 
generating capacity is 36  MW i.e., 4 × 9 = 36  MW. Dur-
ing simulation, the wind speed is kept constant at 15 m/s. 
A 30 km transmission line (TL1) with a 47 MVA step up 
transformer (T1) of 120 kV/25 kV transmits from the off-
shore to on shore. A 150 km transmission line (TL2) with 
capacity of 200 MVA ± 100  kV connects the two con-
verter stations with two 8 mH smoothing reactors. The 
AC voltage from the HVDC inverter is connected at bus 
B4 and to the utility via transformer T3.

4.1  Various faults on HVDC Transmission link
The four types of faults that can occur on the HVDC 
lines are:

(1) Fault between the ground and the positive line 
(PG), shown in Fig. 2.

Fig. 1 Single line diagram of VSC based HVDC system fed by the integrated offshore wind farm

Fig. 2 Short circuit fault between positive and ground (PG) on an HVDC system
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(2) Fault between the ground and the negative line 
(NG), shown in Fig. 3

(3) Fault between the negative and positive lines (PN), 
shown in Fig. 4.

(4) Fault between the ground, the negative and positive 
lines (PNG), shown in Fig. 5.

In Figs. 6, 7, 8 and 9 depict the simulation results of 
the DC differential currents  (Idiff) for the PG, PN, NG, 

Fig. 3 Short circuit fault between negative and ground (NG) on an HVDC system

Fig. 4 Short circuit fault between positive and negative (PN) on an HVDC system

Fig. 5 Short circuit fault among positive, negative and ground (PNG) on HVDC system

Fig. 6 Positive to ground fault on HVDC line at 25 km
Fig. 7 Positive to negative fault on HVDC line at 25 km

Fig. 8 Negative to ground fault on HVDC line at 25 km
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and PNG faults. During the simulation, the faults occur 
between 0.5 and 0.6 s at 25 km of the HVDC line.

In Figs. 6, 7, 8 and 9, simulation run time (T) is shown 
on the X-axis and the DC differential current  (Idiff) on the 
Y-axis. As can be seen, the four faults result in different 
magnitudes of the DC differential currents at the same 
location at 25 km. The TKEO algorithm generates differ-
ent “Teager Energies” from which 8 indices are generated. 
All four types of faults are simulated for each kilometer, 
and the resulting graphs and numerical data are saved. 
For simple presentation, only one graph of each fault at 
the same location 25 km is given.

The initialization of the proposed system is depicted 
in Fig.  10. The AC voltage from the wind generator is 
converted to a DC voltage to check that the designed 
model is in a stable condition. The converted wind farm 
DC voltage is not same as the DC voltage of transmis-
sion line. As can be seen, the DC output steady-state 
is reached after 1  s. Only once the designed system has 
reached a stable condition can fault analysis be per-
formed. The designed system DC output  voltage wave 
is not stable initially,  because of the transient behavior 
which can last up to 1 s. The values of voltage and cur-
rents are in per unit.

Figure  11 shows the three-phase current and voltage 
waveforms before connecting the proposed system to the 
HVDC rectifier. The values of voltage and currents are 
in per unit. As seen, the voltage waveform becomes sta-
ble after 0.15 s while the current is stable after 0.2 s. The 
HVDC rectifier is only enabled after the voltage and cur-
rent become stable.

Figure  12 shows the three-phase current and voltage 
before enabling the inverter. The voltage is stable from 
the beginning while the current waveform becomes sta-
ble after 0.15 s. The values of voltage and currents are in 
per unit.

Fig. 9 PN and ground fault on HVDC line at 25 km

Fig. 10 Initialization of the proposed designed model

Fig. 11 Voltage and current before enabling the rectifier under unfaulty condition
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Figure  13 shows the three-phase currents and volt-
ages at the rectifier when the HVDC line is subjected to 
a fault. During the period of 0.5–0.6 s, a fault is created 
on the HVDC transmission line. For the duration of the 
fault, the differential current spikes can be seen at around 
0.5–0.55. After a transient period, the current is stable at 
0.05 s. The values of voltage and currents are in per unit.

Figure 14 shows the three-phase currents and voltages 
at the faulty inverter. For the duration of the fault the dif-
ferential current spikes can be seen. Due to the transient 
effect (threshold value), the waveform is not stable at 
first, i.e., the current wave settles down after 0.05 s. The 
values of voltage and currents are in per unit.

5  Proposed methodology
The whole working methodology can be understood sim-
ply from Fig. 15.

The whole working method can be understood from 
Fig.  15. The DC differential current  (I1−I2) magnitude 
is almost zero at unfaulty conditions throughout the 
DC line. However, the magnitude increases [(I1−(−I2)] 

rapidly when there is a fault on the HVDC line at any dis-
tance. The methodology contains 5 steps as follows:

Step 1 Whenever a fault occurs, the CIF technique 
is applied to HVDC transmission lines to detect the 
change in current wave form and registers CIP.
Step 2 Extracting “Teager Energy” either from differ-
ential or average currents at CIP at any distance on 
HVDC transmission line is the primary task for fault 
analysis of non-linear and non-stationary signals.
Step 3 TKEO, which tracks the “Teager Energy” of 
the respective signal at CIP with high time resolu-
tion is very efficient in terms of processing time as 
only three current samples (CIP and either side of 
CIP) are used for fault analysis.
Step 4 By using the extracted “Teager Energy”, the 
individual signal processing units of the 8 indi-
ces directly generate their numerical data, that is 
P1 (energy), P2 (amplified energy), P3 (mean), P4 
(standard deviation), P5 (kurtosis), P6 (entropy), P7 
(variance), and P8 from these differential and aver-

Fig. 12 Voltage and current before enabling the inverter under unfaulty condition

Fig. 13 Voltage and current at rectifier in faulty condition
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age current signals (maximum amplitude). All 8 
indices have their own signal processing units.
Step 5 In the final step, a Simple Decision Tree-based 
fault classifier is used. This allows the numerical data 
sets of the 8 indices to pass through it for fault detec-
tion and classification.

5.1  Computation of average and differential current
The averaged and differential current inputs are the two 
important components that differential current relays 
require for functioning and supervision in a differential 
protection scheme. The HVDC instant average and dif-
ferential currents are given as:

(1)Iavrg
(

f
)

=
1

2
×

(

I1
(

f
)

+ I2
(

f
))

where f is the sampling instant.

5.2  Proposed algorithm
The proposed TKEO optimization technique avoids the 
shortcomings highlighted in the identified research gaps 
we cited previously, such as reducing computing com-
plexity and the time required for fault identification and 
classification. This is because only three samples (CIP 
and either side of CIP) are being processed. TKEO is 
more sensitive to fluctuations in the signals under inves-
tigation. In this case, TKEO with the Simple Decision 
Tree-based classifier is a better alternative than other 
methods since it gives higher resolution and reduces 
the time taken to find faults. An "energy" tracing opera-
tor was invented by Teager and used by Kaiser to extract 
indices such as mean, energy, amplified energy, maxi-
mum amplitude, standard deviation, kurtosis, entropy, 
and variance from nonlinear signals. When compared to 
other commonly used algorithms, the TKEO algorithm 
outperforms them with high accuracy in fault detection 
and classification. The TKEO algorithm has formerly 
been employed in speech signal processing systems, 
but this is the first time it has shown promise in a non-
stationary and nonlinear signal engineering application. 
Under any condition, TKEO is a simple method that is 
temporally localized, easy to compute, and capable of 
correctly monitoring the signal’s instantaneous changes 
in amplitude with respect to time. In terms of fault detec-
tion and categorization, the existing methods are quite 
lacking. In addition, the conventional methods process a 
large amount of data and this takes longer and increases 
the computational burden for fault analysis.

(2)Idiffe f = I1 f − I2 f

Fig. 14 Voltage and current at the inverter in faulty condition

Fig. 15 Flow chart of the proposed working methodology
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Change Identification Filter (CIF) working process:
Assume Z is the total number of samples for a signal x (I 

avrg or I diffe) that has been sampled with S equal to 0 which 
is the initial sample. As a result, the CIF of the signal x may 
be described mathematically as:

where j is the iteration number, m is the sample num-
ber starting from the  1st sample, i.e., S + 1, while the ini-
tial CIFx i.e., CIFx (0) = 0. To identify the change on any 
HVDC line (positive or negative), the CIF formulation is 
applied to the current signal.

The TKEO algorithm procedure is explained as:
The numerical value of TKEO can be calculated using 

only 3 samples of the signal (CIP and either side of CIP).
The discrete energy of signal h(l) can be calculated as:

where h(l–1) is the delayed sample and h(l + 1) is the 
advanced sample of h(l).

The time can be calculated as:

The instantaneous amplitude is given by

Indices Extraction from “Teager Energy”:
Consider a signal K(x) , which comprises x samples and 

x = 1, 2 . . .n then.
Energy (P1): The energy of the aforementioned samples, 

which is defined as the sum of the square of the sample, can 
be computed as:

Amplified energy (P2): It is defined as the sum of the sam-
ple’s product (x) and its square (K(x)), and can be calcu-
lated as:

(3)

CIFx
(

j
)

= CIFx
(

j − 1
)

+

Z
∑

m=S+1

{x(m)− x(m− S)}

(4)�[h(l)] = {[h(l)]2 − h(l − 1)× h(l + 1)}

(5)y(l) = h(l)− h(l − 1)

(6)E(l) = 1−
�[y(l)]−�[y(l + 1)]

4�[h(l)]

(7)ht(l) = cos − 1[E(l)]

(8)
∣

∣Ai(l)
∣

∣ =

√

�[h(l)]

1− E2(l)

(9)P1 =

n
∑

x=1

K 2
(x)

(10)P2 =

n
∑

x=1

x × K 2
(x)

Mean (P3): The ratio of the sum of observations to the 
number of current signal samples (x), as:

Standard Deviation (P4): It is the difference between 
readings acquired from repeated measurements. It is also 
a way to quantify the variance or scatter of data set val-
ues, which may be determined by:

Kurtosis (P5) It is defined as a measure of the random 
variable’s tiredness. The central moment is defined as the 
moment of the mean of a random variable (P3), which 
can be calculated as:

where P4 = standard deviation, P3 = mean.
Entropy (P6): It is a measure of a random variable’s ran-

domness that can be calculated as:

Variance (P7): It is defined as a measure as to how far a 
set of random numbers deviates from their mean value, 
which can be calculated as.

Maximum Amplitude (P8): It is described as a measure 
of the maximum amplitude value as:

5.3  Simple Decision Tree‑based fault classifier
Equations (1) and (2) are used to determine the differen-
tial and average current signals at CIP. The performance 
indices are calculated using the TKEO energy from the 
differential current signals. For fault type and identifica-
tion, the proposed approach allows the indices described 
above to pass through an event classifier. The proposed 
method, as shown in the flow chart in Fig. 16, is used to 
handle the eight indices stated above. On a VSC-based 
HVDC bipolar transmission system, the Decision Tree-
based fault classifier can quickly identify the fault type 
and its classification. The fault classifier’s decision-mak-
ing process is described in detail in the tree diagram 

(11)P3 =

∑n
x=1 K(x)

x

(12)P4 =

√

√

√

√

1

x − 1

n
∑

x=1

∣

∣K(x) − P3
∣

∣

2

(13)P5 =
(P3)4

( P4)4

(14)P6 =

n
∑

x=1

K(x) logi K(x)

(15)P7 =

n
∑

x=1

(K(x) − P3)2

x

(16)P8 = max
(

signal
)
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below. The flow chart in Fig.  16 illustrates that the dif-
ferential and average current signals  Idiff and  Iavrg are 
extracted and preserved and then, are subjected to the 
TKEO algorithm, which yields eight indices. The pro-
cessed 8 indices are passed through a fault classifier to 
determine the type of fault with classification.

6  Results and discussion
MATLAB/Simulink is employed in this investigation and 
the simulation runtime for the system is one second. The 
following faults are specified on an HVDC line: PG fault, 
NG fault, PN fault, and PNG fault. The HVDC transmis-
sion link is 150 km long made up of two pi sections. At 
CIP, the energy is calculated using the Teager–Kaiser 
algorithm with three samples.

The targetted 8 indices P1-P8 are calculated using 
"Teager Energy", and are processed for fault detection 
and classification using a Simple Decision Tree-based 
fault classifier. The numerical data sets of all 8 indices are 
calculated and tabulated in Tables  1, 2, 3 and 4, which 
illustrate the ranges (maximum and minimum) of P1–P8 
for all four fault types.

Tables 1, 2, 3 and 4 illustrate the ranges (maximum and 
minimum) of the indices: energy (P1), amplified energy 
(P2), mean (P3), standard deviation (P4), kurtosis (P5), 

Start and simulate 
thedesigned model

Using teager energy,
Calculate the Energy, Amplified energy, Mean, Standard deviation, Kurtosis, 

Variance, Maximum amplitude and store it in variables from P1 to P8

(1.23E+00 <P1 && P1<4.87E+10) && (1.12E+01<P2 && P2<1.45E+12) &&
( 8.21E+01<P3&& P3<2.74E-02) && (6.07E-02<P4 && P4<2.83E+04) && 
(2.83E+04<P5 && P5<5.81E+01) && (5.15E-01<P6 && P6<4.65E+00) && 
(5.30E-03<P7 && P7<2.38E+09) && (3.62E-01<P8 && P8<1.56E+05)

Case 1
PG fault

(2.16E+00 <P1 && P1<1.14E+15) && (2.59E+01<P2 && P2<1.53E+16) && 
( 2.80E+02<P3&& P3<4.68E-01) && (1.38E-01<P4 && P4<4.32E+06) && 
(2.76E+03<P5 && P5<5.81E+01) && (1.03E+00<P6 && P6<3.80E+00) && 
(7.84E-02<P7 && P7<8.43E+13) && (3.97E-01<P8 && P8<2.38E+07)

(2.411 <P1 && P1<83354E+6) && (50.491<P2 && P2<1.7087E+12) &&  
31.646<P3&& P3<0.0403) && (0.1519<P4 && P4<36966) && (<1873.4P5 && 
P5<58.0951) && (1.5013<P6 && P6<) && (4.6316<P7 && P7<0.1052) && 
(40685E+5<0.3799P8 && P8<204190)

 (2.0917<P1 && P1<80823E+6) && (51.419<P2 && P2<1.6968E+12) && 
( 66.688<P3&& P3<0.0299) && (0.1548<P4 && P4<36400) && (1738.1<P5 && 
P5<58.095) && (1.4661<P6 && P6<4.6517) && (0.1069<P7 && P7<3945E+6) && 
(0.3864<P8 && P8<201070)

Case 2
NG fault

Case 3
PN fault

Case 4
PNG fault

Find teager energy using TKEO agorithm

Fig. 16 Decision tree flow chart for the proposed system

Table 1 PG short circuit fault ranges

Fault Parameter Maximum Minimum

P_G P1 4.87E+10 1.23E+00

P2 1.45E+12 1.12E+01

P3 2.74E−02 − 8.21E+01

P4 2.83E+04 6.07E−02

P5 5.81E+01 − 7.35E+04

P6 4.65E+00 5.15E−01

P7 2.38E+09 5.30E−03

P8 1.56E+05 3.62E−01

Table 2 NG short circuit fault ranges

Fault Parameter Maximum Minimum

N_G P1 1.14E+15 2.16E+00

P2 1.53E+16 2.59E+01

P3 4.68E−01 − 2.80E+02

P4 4.32E+06 1.38E−01

P5 5.81E+01 − 2.76E+03

P6 3.80E+00 1.03E+00

P7 8.43E+13 7.84E−02

P8 2.38E+07 3.97E−01
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entropy (P6), variance (P7), and maximum amplitude 
(P8) for all four fault types under faulty conditions.

Tables 5, 6, 7 and 8 show the indices of the data from 
PG, NG, PN, and PNG faults, respectively. Each table 
contains 298 (149 × 2) data sets, one for each kilometer 
of the 150 km HVDC link. The two currents (differential 

and average currents) are used to tabulate each index 
data set at the faulty condition, each comprising 596 × 8 
feature data sets. For the system, a total of (596 × 8) × 2 
feature data sets have been produced. The indices data 
sets for the four faults at fault positions at 30 km, 60 km, 
90  km, 120  km, and 149  km are provided in the tables 
for ease of understanding. Tables  5, 6, 7 and 8 clearly 
indicate that the ranges of numerical values produced 
at various distances are associated with various types of 
indices, allowing for accurate fault detection and fault 
categorization.

For a better understanding of the proposed strategy, a 
few example distances and their respective values for all 
the eight indices (P1–P8) are provided. The fault detec-
tion and its classification can be accurately determined 
since different attributes have unique values. Every indi-
vidual index has its own unique number that does not 
overlap with other indices, indicating that the fault detec-
tion and classification can be determined accurately 
more quickly.

6.1  Performance evaluation of the proposed strategy
The performance of the proposed classifier is evaluated 
using indices generated from the "Teager Energy" using 
the TKEO method. The Simple Decision Tree-based 
fault classifier framework has a training and testing 

mechanism. During the training phase, initial parameters 
are optimized, and these values are then tested. From a 
total of 1192 (298 × 4) differential current data samples 
 (Idiffe), 477 (40%) are chosen at random throughout the 
testing phase. The fault-finding efficiency of the proposed 
approach is 98.75%. The efficiencies of the proposed 
approach are displayed in Table  9, which are calculated 
as:

As previously described, the total fault samples of differ-
ential current  (Idiffe) are 298 × 4 = 1192, of which 60% (715) 
are trained for system training purposes and the rest 40% 
(477) are examined to check the efficiency and accuracy 
of the detection of the fault and fault type. The remain-
ing 1192 average samples are ignored to reduce compu-
tational burden for fault analysis. 1192 + 1192 = 2384 are 
the total data sets generated for the 8 indices using the dif-
ferential and average currents at CIP at each km.

The procedure for calculating efficiency is as follows:

• Step 1:Assign A = 0 if the test sample size is B and the 
number of correctly classified data sets is A.

• Step2 A random number x, along with an initial 
guess, should be created. If x falls between data sets 
1 and 298, the fault type is PG, and then u is set to 
1. The fault is a PN type fault if x is between 299 and 
596, and u is set to 2. The fault type is NG and u is set 
to 3, if x is between 597 and 894. Otherwise, the fault 
is of PNG type if x is between 895 and 1192, and u is 
set to 4.

• Step3 The data sets ([P1, P2… P8] × 8) are taken from 
the original data sets ([P1, P2… P8]596 × 8) for the 
testing data sets and are allowed to pass through the 
decision tree-based fault classifier to construct v, and 
the method works according to the following criteria 
for fault detection and classification:

(17)Efficiency η% =

[

Number of rightly classified data samples

Randomly pickdup samples from total group set

]

× 100

Table 3 PN short circuit fault ranges

Fault Parameter Maximum Minimum

P_N P1 83,354,000,000 2.4118

P2 1.7087E+12 50.4919

P3 0.0403 − 31.6467

P4 36,966 0.1519

P5 58.0951 − 1873.4

P6 4.6316 1.5013

P7 4,068,500,000 0.1052

P8 204,190 0.3799

Table 4 PNG short circuit fault ranges

Fault Parameter Maximum Minimum

P_N_G P1 80,823,000,000 2.0917

P2 1.6968E+12 51.4191

P3 0.0299 − 66.688

P4 36,400 0.1548

P5 58.0959 − 1738.1

P6 4.6517 1.4661

P7 3,945,000,000 0.1069

P8 201,070 0.3864
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• If the algorithm determines that the fault is caused by 
a PG short circuit, set v to 1.

• If the program detects a short circuit between the 
negative pole and the positive pole (PN), v is set to 2.

• v is set to 3 if the program checks for a short circuit 
fault between ground and the negative pole.

• v is set to 4 if the program checks for short circuit 
between grounds, negative pole, and positive pole 
(PNG).

Step4 If u = = v, then A = A + 1.
Step5 To detect the fault, the efficiency is calculated 
as: efficiency (percentage) = [(A B) 100].

The proposed approach is compared to existing meth-
ods in terms of efficiency to confirm that it provides 
improved protection efficiency, as illustrated in Table 10.

The following conventional methods are considered:

1. An approach based on Park theory and a wavelet 
transform [28]. Converting line voltage or current 
signals into  dq0 components and analyzing their 
behavior during faults to find patterns that signal the 
starting of a fault is part of the process. By filtering 
one of the  dq0 components using the wavelet trans-
formation and isolating band frequencies of interest, 
the finite difference between samples of the filtered 
signal can be used to detect faults.

2. The method based on mathematical morphol-
ogy [26]. This method detects and classifies faults 
by applying the MM concept’s dilation and erosion 
median filters on current signal.

3. The method based on correlation concept [29]. To 
detect and classify the faults, this technique com-
bines synchronized measured line currents and the 
correlation notion. The statistical cross-alienation 

coefficients for the measured current signals at the 
transmitting and receiving ends of each feeder are 
determined using this method. Changes in the syn-
chronized and discretized waveforms of current 
signals inside a moveable window are taken into 
account in the fault detection and classification pro-
cedure (one-fourth cycle).

4. The method depended on reactive energy [30]to cal-
culate the superimposed reactive energy (SRE).This 
technique employs the Hilbert transform. SRE is the 
integral of superimposed reactive power over a given 
time period. To identify faults in HVDC lines, several 
ratios are defined based on SRE.

The performance of the proposed strategy is compared 
in Table  11 to the aforementioned methods using the 
four criteria of accuracy, required average time, compu-
tational complexity and robustness to operate. Accuracy 
is defined as:

Based on the results from Table 11, it is clear that the 
effectiveness of the proposed system has increased, and 
so has its computational complexity and classification 
efficiency.

Table 12 shows that the average time taken to identify 
the fault with different fault resistances is 10  ms high-
lighting the superiority over other methods.

7  Conclusions
To detect and classify power system faults on an 
HVDC transmission link, a novel “Teager–Kaiser 
Energy Operator” (TKEO) method which is combined 
with a Simple Decision Tree-based fault classifier has 
been investigated. The differential and average cur-
rent components are subjected to a Change Identifi-
cation Filter (CIF), which detects the first instant of 
fault (greater than the threshold value) incidence 

(18)Accuracy % =

[

1−
Number of incorrect discrimination

Number of whole cases from total group set

]

× 100

Table 9 Calculated efficiency of the proposed method

Serial Number Fault Type Randomly 
collected total 
data set

Number of random samples of data sets picked up 
for testing the proposed technique

Fault finding efficiency% (In percentage)

1 PG 149 × 2 = 298 477 (40% of total) random samples data sets from 
1192 are taken for the testing purpose

98.75

2 PN 149 × 2 = 298

3 NG 149 × 2 = 298

4 PNG 149 × 2 = 298

Total data sets 298 × 4 = 1192
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and registers a Change Identified Point (CIP). Fur-
ther, if the CIP is registered either for a positive or 
negative line, only three samples of differential and 
average currents at CIP and each side of the CIP are 
sent through the proposed TKEO algorithm, which 

produces their respective 8 indices for fault detec-
tion and classification. The new method allows for 
quick detection of the fault type and classification. 
This cutting-edge technology increases fault identifi-
cation efficiency while improving fault classification 
with greater accuracy. This approach also reduces the 
computing complexity and the average time required 
to identify faults is 10  ms as only three samples are 
required. The importance and significance of the pro-
posed scheme have also been thoroughly tested and 
compared with some conventional methods for vari-
ous faults on HVDC transmission lines. The outputs 
are satisfactory, demonstrating the real-time applica-
bility of the proposed scheme. This can be useful for 
broad area protection.

Table 10 Comparison in terms of efficiency of the proposed 
method with existing methods

Serial 
number

Methods Fault finding 
efficiency 
(%)

1 Hilbert–Huang transform (HHT) method [27] 90.41

2 Artificial neural network (ANN) method [19] 95.90

3 The proposed method (TKEO with Decision 
Tree)

98.75

Table 11 Comparison of proposed with conventional methods in various factors

parameter Method (Conventional) Proposed method

1 2 3 4

Accuracy % 64.27% 69.96% 82.27% 74.29% 98.75%

Required average operating time(in 
ms)

18 23 24 15 11

Robust in operation No No No No Yes

Computational burden High High High High Very low

Table 12 The time taken to detects the faults when all wind farms are turned ON

Sl no Fault type Fault resistance (in ohms) Relay trip timing 
(milliseconds)

Wind farm operation mode

1 PG 0.1 9.17 When all 4 wind farms are turned ON

PN 0.1 10.11

NG 0.1 9.15

PNG 0.1 10.11

2 PG 0.2 10.24 When all 4 wind farms are turned ON

PN 0.2 9.25

NG 0.2 9.22

PNG 0.2 10.87

3 PG 0.5 10.85 When all 4 wind farms are turned ON

PN 0.5 10.65

NG 0.5 10.37

PNG 0.5 9.52

4 PG 1 10.99 When all 4 wind farms are turned ON

PN 1 9.57

NG 1 10.55

PNG 1 9.16
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Index:

S. No Component Specific details of 
components

1 Wind turbine DFIG 9 MW of unit of frequency 60 Hz 
and average speed of wind 
15 m/sec [2]

2 PV Arrays Sun Power SPR 415-E WHT-M 
model with 7 series strings and 
88 parallel strings

3 AC T/m link Length 30 km, frequency 60 Hz, 
capacitance  [C1,  C0];[11.33e−009 
5.001e−009] Farad/km, [17] 
resistance  (R1,  R0);[0.1153 0.413] 
ohm(Ω) per km, inductance 
 [L1,L0];[1.05e−3 3.32e−3] H/km

4 DC T/m link Length 150 km, Pi Sects. 2, 
inductances/Unit length 
1.5900e−004 Henry per km, 
capacitances/Unit length 
2.3100e−007 Farad per km 
and Resistances/Unit length 
1.3900e−003Ω Ω/km

5 Phase reactor 0.15 p. u., inductance 
0.15 ×  (1002/200)/(2 × pi × 60)
mH and resistance 
0.0015 ×  (1002/200) mΩ

6 AC filter Frequency 60 Hz, Quality factor 
15 and reactive component 40 
MVAR

7 DC filter 12 micro farads

8 DC capacitor 500 micro farads

9 Smoothing reactor Resistance 0.0851Ω, Inductances 
25.0e−3 H

10 DC fault RG which is resistance of ground 
is 0.02Ω (Ω) and Time of Switch-
ing 0.5 s [2]

11 Three level bridge IGBT/Diodes Resistance of internal 1 milliohm 
(Ω), Snubber circuit resistance 
5000 Ω (Ω) and capacitance 
1micro. F

12 VSC Voltage source converter
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