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Abstract 

Offshore wind farms (OWFs) have received widespread attention for their abundant unexploited wind energy poten-
tial and convenient locations conditions. They are rapidly developing towards having large capacity and being located 
further away from shore. It is thus necessary to explore effective power transmission technologies to connect large 
OWFs to onshore grids. At present, three types of power transmission technologies have been proposed for large 
OWF integration. They are: high voltage alternating current (HVAC) transmission, high voltage direct current (HVDC) 
transmission, and low-frequency alternating current (LFAC) or fractional frequency alternating current transmission. 
This work undertakes a comprehensive review of grid connection technologies for large OWF integration. Compared 
with previous reviews, a more exhaustive summary is provided to elaborate HVAC, LFAC, and five HVDC topologies, 
consisting of line-commutated converter HVDC, voltage source converter HVDC, hybrid-HVDC, diode rectifier-based 
HVDC, and all DC transmission systems. The fault ride-through technologies of the grid connection schemes are also 
presented in detail to provide research references and guidelines for researchers. In addition, a comprehensive evalu-
ation of the seven grid connection technologies for large OWFs is proposed based on eight specific indicators. Finally, 
eight conclusions and six perspectives are outlined for future research in integrating large OWFs.
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1 Introduction
The issues of environmental pollution and insufficient 
fossil fuel energy are becoming increasingly severe. To 
mitigate environmental degradation and optimize energy 
structure [1, 2], renewable energy sources (RESs), such as 
solar energy and wind energy, have received widespread 
attention all over the world [3–7].

Wind energy had more deeper exploitation than solar 
energy because of its advantages of wide distribution 
and mature technologies [8–11]. Despite the vigorous 

development of onshore wind power, it is currently fac-
ing the challenges of noise produced by wind turbines 
(WTs) and the availability of land. Offshore wind farms 
(OWFs) [12] have received global interest because of 
the enormous untapped wind resources and better wind 
regime. Currently, OWFs are developing towards hav-
ing large capacity and long-distance transmission, while 
grid connection of OWFs has brought new challenges 
to technology and economy. Therefore, it is necessary 
to explore proper power transmission technologies that 
can connect large OWFs to the onshore power grid over 
long distances [12–14]. Over the past 20 years, different 
transmission schemes for large OWF integration have 
been proposed and discussed, and the majority of the 
researches centers on the operational feasibility and eco-
nomics of each transmission system [15–18].
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Thus far, three types of transmission technologies have 
been proposed for large OWF integration, i.e., high volt-
age alternating current (HVAC) transmission [16], high 
voltage direct current (HVDC) transmission [15], and 
low-frequency alternating current (LFAC) or fractional 
frequency alternating current (FFAC) transmission [18], 
as shown in Fig. 1. HVAC technology is a common and 
cost-efficient power transmission mode for large-scale 
new energy industries. Consequently, this transmission 
system is the first choice for most large OWFs [19, 20]. 
However, the power loss of the system has a strong cor-
relation with the distance. The large reactive power loss 
on the cable is the biggest shortcoming of HVAC, and 
therefore its transmission distance is often limited. Since 
OWFs will tend to be built further offshore in the future, 
HVDC and LFAC may become the only solutions for 
ultra-long distance power transmission [18, 21]. There 
are five topologies based on HVDC systems, i.e., line 
commutated converter HVDC (LCC-HVDC) [22], volt-
age source converter HVDC (VSC-HVDC) [23], hybrid-
HVDC [24], diode rectifier based HVDC (DR-HVDC) 
[25], and all direct current (ALL-DC) [26] transmission 
system. HVDC has the edge in terms of cost, efficiency, 
and applicability compared with HVAC, especially VSC-
HVDC and ALL-DC systems that are prevalent in most 
OWFs. LFAC [18, 27] is developed from HVAC trans-
mission technology and works at one-third of power 
frequency (such as 50/3  Hz or 60/3  Hz). This system 
minimizes offshore converter stations and enhances 

the transmission capacity of AC cables compared with 
HVAC. However, HVAC and HVDC have already been 
widely applied in OWF integration, while LFAC has 
only had engineering experience in railway electrifica-
tion systems. LFAC transmission technology is still under 
development, though it very significant for improving 
reliability and reducing the complexity of future OWFs 
[27].

Until now, several reviews of grid connection technolo-
gies for OWF integration have been published, and their 
main contents and limitations are illustrated in Table 1.

To comprehensively introduce grid connection tech-
nologies for large OWFs, this work reviews seven power 
transmission technologies and the corresponding fault 
ride-through (FRT) techniques for integration of large 
OWFs. The performance of all transmission technologies 
is also evaluated. Finally, this work presents some per-
spectives for the future development of grid connection 
of large OWFs. The organization of this work is demon-
strated in Fig. 2, and the main contributions and innova-
tions of this work are listed as follows:

• The existing grid connection technologies for large 
OWFs are reviewed, including HVAC, LFAC, and 
five HVDC topologies such as LCC-HVDC, VSC-
HVDC, Hybrid-HVDC, DR-HVDC, and ALL-DC 
transmission system. To the best of authors’ knowl-
edge, there has been no such comprehensive review 
of the grid connection technologies for large OWFs.
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Fig. 1 Technologies of OWF integration
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• The research of FRT mainly focuses on system 
stability, especially the control of voltage and fre-
quency. This paper summarizes several novel FRT 
technologies for grid connection of large OWFs, 
and provides some references for researchers.

• Economic analysis and transmission distances of all 
grid connection technologies must be considered for 
OWFs. Consequently, this paper comprehensively 
evaluates the seven grid connection technologies 
based on five specific indicators, and summarizes the 
application and performance of every scheme. The 
relationships of the transmission distances with the 
overall cost and active power for three integration 
technologies are analyzed in this work.

• According to previous studies and the analysis in 
the paper, this work outlines eight conclusions and 

six perspectives for the development of future large 
OWFs, and points out that All-DC and LFAV trans-
mission technologies have great significance for the 
cost-effective integration of future large OWFs.

2  Review screening methods
To collect the statistics of literature on OWF connec-
tion, this work uses three Scopus services (Elsevier, 
Google Scholar, and Web of Science) to investigate 
related references by searching keywords and phrases, 
such as large OWFs, HVDC, HVAC, LFAC, and trans-
mission system. The process of literature selection and 
statistical results is demonstrated in Fig. 3.

Table 1 Evaluation of previous reviews

References Year Technology Main contents Limitation

Jie et al. [28] 2014 VSC-HVDC •  Converter topologies of VSC-HVDC for OWFs 
grid integration
•  Control methods of VSC-HVDC

•  Topologies of VSC-HVDC for OWFs connection 
are not investigated and categorized
•  Classification of VSC-HVDC is not clear and 
complete

Zhang, et al. [29] 2016 Multi-terminal HVDC
(MTDC)

•  Key technologies and operation of MTDC 
systems for large OWFs integration
•  Modular multi-level converter (MMC)

•  Lack of new MMC technologies
•  Comparison of MTDC topologies is not com-
prehensive

Korompili et al. [12] 2016 VSC-HVDC •  Topologies of VSC-HVDC
•  FRT technologies

•  Lack of new topologies and technologies of 
VSC-HVDC
•  Applicable environment evaluation of various 
approaches is not ccovered
•  Lack of practical perspectives for future work

Ruddy et al. [30] 2016 LFAC •  Existing research conducted on LFAC
•  LFAC transmission system components

•  Limited scope of content
•  Incomplete economic evaluation

Chaithanya et al. [31] 2017 LFAC •  LFAC transmission technology
•  Evaluation of three technologies

•  Lack of economic evaluation
•  Discussion on HVAC and HVDC is not compre-
hensive
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3  Grid connection technology of large offshore 
wind farm

Compared with onshore wind farms, the construc-
tion, installation, and power transmission of OWFs are 
technically more complicated and expensive [14]. At 
present, there is no independent design method and 
standard for offshore WTs anywhere in the world [15]. 
There are two basic modes of grid connection of OWFs: 
AC transmission and DC transmission.

3.1  HVAC transmission system connection
3.1.1  Topology type and basic control strategy
The structure of OWFs based on HVAC is shown in 
Fig.  4 [16]. The voltage amplitude and frequency 
from the wind turbine generator (WTG) are vari-
able. The varying frequency AC current of the WTG 
is converted into the AC current with the synchro-
nous frequency of the power grid after being trans-
formed by a converter. Then the power is transmitted 
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Fig. 3 Review of relevant researches in the recent 10 years, a choosing process and b statistical results
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to an onshore substation through a submarine cable 
after step-up transformers. Since the voltage level of 
the offshore array of OWFs is usually in the range of 
30–36 kV [19] while the transmission voltage is in the 
range of 132 kV to 400 kV, the offshore step-up trans-
former plays an important role in the power transmis-
sion system.

HVAC transmission technology is a mature and cost-
efficient system for power transmission of large-scale 
renewable energy. Consequently, this transmission sys-
tem is the first choice for most large OWFs. However, 
the high capacitance of HVAC cables produces reac-
tive current and results in high power loss. Thus, the 
transmission distance of HVAC is limited. The active 
power transmission capability of HVAC cable and the 
reactive power produced by the capacitive charging 
current are given as [21, 32]:

where PR is the maximum transmissible active power, Qc 
is the reactive power, Sth is the maximum apparent power, 
C is the capacitance of the cable, l is the transmission dis-
tance, E is the rated voltage, and f  is the frequency.

Figure  5 illustrates the relationship between the 
active power that can be transmitted by HVAC subma-
rine cable at different frequencies and distances [33, 
34].

(1)PR =

√

S2
th
− Q2

c =

√

S2
th
−

(

2π fClE2
)2

(2)Qc = 3

(

E
√
3

)2

· 2π f · C · l = E2
· 2π f · C · l

3.1.2  Fault ride through technology
Various generator systems have been used in OWFs 
[35–38]:

(a) Squirrel-cage induction generator (SCIG);
(b) Doubly-fed induction generator (DFIG);
(c) Permanent magnet synchronous generator (PMSG).

FRT technology of offshore wind power based on 
HVAC transmission system can be divided into low volt-
age ride-through (LVRT) and high voltage ride-through 
(HVRT) [39, 40]. At present, LVRT requirement is con-
sidered as the most stringent one. LVRT requirements of 
some countries are shown in Fig. 6 [41, 42], while LVRT 
requirements of the USA references to the Federal Energy 
Regulatory Commission (FERC). However, there is no 
relevant operational standard for HVRT of wind farms 
in China, while [43] proposes HVRT technical require-
ments for developed countries.

FRT technologies of onshore wind farms are used in 
OWFs [44]. References [45–47] summarize FRT strate-
gies for different WT systems in onshore wind farms. 
There are two typical methods to realize FRT, i.e., 
improving the external devices and modifying the con-
troller. FRT technologies and generator systems of off-
shore wind power based on HVAC transmission system 
are summarized and categorized in Table 2.

3.2  HVDC transmission system connection
A large number of studies have confirmed that HVAC 
subsea transmission scheme has distinctive limitations in 
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Onshore
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Fig. 4 Basic configuration of HVAC solution
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transmission distance, power losses, and resonance prob-
lems. An HVDC transmission scheme is preferred for 
integrating OWFs over long distance, which can effec-
tively overcome the problems of cable charging current 

and reactive power loss of AC cables [52]. A detailed 
analysis and assessment of HVDC transmission systems 
based on a global scale is presented in [53]. The develop-
ment of HVDC transmission systems is mainly based on 
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LCC and VSC, where LCC is also known as the current 
source converter (CSC) [22, 23]. Recently, some studies 
have suggested hybrid-HVDC [24] and DR-HVDC [25] 
based on LCC and VSC. In addition, to further reduce 
the cost of HVDC transmission systems, ALL-DC system 
[26] has been proposed for OWF integration.

3.2.1  Topology type and basic control strategy

1. LCC-HVDC

LCC-HVDC using thyristors is the most widely applied 
technology for long distance and large capacity transmis-
sion on land [54–56]. However, the large volume of LCC 
converter stations adds difficulties to onshore installa-
tion, and it seems unrealistic to build LCC stations off-
shore. Therefore, LCC-HVDC transmission technology 
is only suitable for establishing an on-land LCC station 
[57].

Reference [58] illustrates the schematic representation 
of OWFs and LCC-HVDC link connection, as shown in 
Fig. 7. The operation of an LCC requires a commutation 
voltage, so it does not have black start capability and can-
not supply power to a passive network. As there is no 
commutation voltage before the start-up of wind farms, 
an external device, such as a STATCOM, is required to 
provide a stable AC voltage for the converter [59]. The 
impedance models for wind turbine inverters, LCC-
HVDC rectifier, and STATCOM can be found in [60].

Some novel control strategies of LCC-HVDC have 
been proposed in several papers. Reference [61] presents 
a system that comprises an LCC-HVDC and a STAT-
COM for connecting DFIG-based OWFs. A series tap-
ping station based on a CSC for offshore wind power 
integration is introduced in [62], while [54] addresses 
the simulation of direct voltage and frequency control of 

OWFs with an LCC-HVDC connection. A scheme using 
a designed adaptive-network-based fuzzy inference sys-
tem (ANFIS) damping controller at the inverter station of 
an HVDC link is proposed in [63]. It is noteworthy that 
the filter design is one of the most difficult areas in the 
development of LCC-HVDC. Reference [64] proposes 
to use WTs with fully rated converters to reduce HVDC 
rectifier filter requirement.

2. VSC-HVDC

At present, VSC-HVDC technology is implemented 
in most large OWFs throughout the world. Using power 
electronic devices, such as the gate turn-off thyristor 
(GTO) and insulated-gate bipolar transistor (IGBT) that 
can be turned on and off, VSC-HVDC has the capabil-
ity of black start and can interconnect passive networks. 
The advantages of VSC-HVDC transmission technology 
make it more suitable for the grid connection of OWFs 
than LCC-HVDC [12, 65]. Moreover, the application of 
VSC-HVDC facilitates the realization of multi-terminal 
grids and future global power interconnection.

(a) Two-terminal VSC-HVDC

Figure  8 shows a typical two-terminal VSC-HVDC 
transmission system for integrating OWFs. The system 
is comprised of converters, transformers, phase reactors, 
AC filters, DC cables, circuit breakers, DC capacitors, 
and filters [12]. The converter stations in VSC-HVDC 
have a variety of configurations, among which two-level 
and three-level converters have been applied to small 
OWFs [29, 66].

With the development of power electronics technol-
ogy, especially the widespread application of MMC in 
VSC-HVDC, the economy and efficiency of VSC-HVDC 
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systems have been significantly increased [67, 68]. As 
shown in Fig.  9, MMC is different from the traditional 
two or three-level converters, and can reduce switch-
ing frequency and switching loss, and provide better 
power quality [69, 70]. References [71, 72] introduce the 
operation principle, mathematical model, and imped-
ance model of an MMC-HVDC. The startup sequence of 
OWFs with MMC-HVDC grid connection can be found 
in [73].

Research on MMC-HVDC systems mainly focuses on 
MMC modulation method, control of submodule capaci-
tor voltage, and AC/DC fault protection. MMC modu-
lation methods can be divided into carrier pulse width 
modulation (PWM), multilevel voltage space vector 
modulation, and multilevel step wave modulation.

Reference [74] illustrates the impact of control-
ler parameters on system stability. Some techniques of 
MMC-HVDC for OWFs integration are summarized in 
[12, 29], and recent related studies are listed in Table 3.

(b) VSC-MTDC

At present, the typical two-terminal VSC-HVDC 
system has many worldwide applications, but the two-
terminal system is no longer suitable for connecting the 

grid with multi-regional renewable energy [81]. OWFs 
are scattered in different areas because of environmen-
tal limitations. In addition, onshore converter stations 
are also distributed in different regions because of 
the geographical locations of the load centers. Conse-
quently, MTDC can provide more economic and tech-
nological benefits than the typical two-terminal HVDC 
[82]. VSC is more appropriate for realizing MTDC 
transmission than LCC since the direction of power 
flow can be flexibly controlled by VSC-HVDC without 
changing the polarity of DC voltage [83]. The structure 
of an MTDC-VSC is shown in Fig. 10.

The topological structure of VCS-MTDC systems is 
directly related to the reliability and practicability of 
the control strategy. There are many different topolo-
gies of an MTDC system. They can be applied in the 
power transmission of large OWFs. References [84, 85] 
classify the topologies of MTDC systems into several 
types, mainly including point-to-point, general ring, 
star, star with central switching ring, wind farms ring, 
and substation ring topologies. In general, they can be 
divided into four types of structure: (a) radial; (b) ring; 
(c) lightly meshed; (d) densely meshed [86]. The selec-
tion of the appropriate MTDC topology depends on 
the system requirements for operation and robustness, 

Table 3 MMC-HVDC of OWFs researches

References Year Goals Objectives Performance Complexity Superiority

Modulation 
strategy

Submodule 
equalization

AC/DC 
fault 
protection

Gi et al. [75] 2018 √ •  DC series-connected 
wind farm
•  Tap changing trans-
former

•  Stable power transmis-
sion

*** ***

Fan et al. [76] 2018 √ •  Voltage droop control
•  Improve PI control

•  Active power balance 
achieved
•  DC-side volatile stability 
enhanced
•  Conventional PI control 
improved

*** ***

Yao et al. [77] 2019 √ √ •  AC/DC converter
•  Six-phase PMSG

•  Minimum torque ripple 
and harmonics ensured
•  Voltage fluctuation 
suppressed

**** ****

Zun et al. [78] 2019 √ •  Capacitor energy of 
MMC-HVDC submodule
•  Over-speed reserve 
capacity

•  Fast frequency support 
provided
•  System inertia 
improved

**** ***

Meng et al. [79] 2020 √ √ •  Parallel multiple sub-
module (PM-SM)
•  Carrier phase-shift 
modulation

•  Power quality of the 
system improved
•  High frequency filtered

**** ***

Zhang et al. [80] 2021 √ •  Hybrid MMC
•  Unloading resistor

•  Reactive power sup-
port enhanced
•  Voltage drops alleviated

**** ****
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as well as the geographical locations of the substations 
and OWFs [12].

Studies on MTDC mainly focus on system stability, 
network control stagey, AC/DC fault protection, while 
the control of converter station and DC voltage are cru-
cial to the stability of VSC-MTDC systems. The control 
system of an MTDC network generally consists of an AC 
grid side s, wind farm side, and DC power flow control 
systems [85, 86]. Reference [87] discusses the modeling 
and control of VSC-MTDC systems and presents a link 
between power flow models and steady-state operating 
points. To enhance system stability, reference [88] pro-
poses a two-level combined control scheme for VSC-
MTDC integrated OWFs. However, system control and 

DC breakers are the most challenging tasks in MTDC 
transmission networks. A communication-less DC volt-
age cooperative control strategy for MTDC transmission 
systems is proposed in [89] to effectively maintain a sta-
ble DC link voltage.

MMC-based MTDC (MMC-MTDC) enables multi-
ple power sources at multiple locations. As a flexible and 
efficient transmission mode, MMC-MTDC has broad 
application prospects in grid connection of OWFs and 
other renewable energy. China is in a leading position in 
this transmission technology. So far, there are only three 
MMC-MTDC projects in the world, i.e., Nan’ao three-
terminal project, Zhoushan five-terminal project, and 
Zhang-Bei ± 500 kV four-terminal demonstration project 
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[90]. There are usually three control levels for an MMC-
MTDC system, i.e., system, converter station, and valve 
levels. Most MMC-MTDC control systems use double 
closed-loop PI control strategies. In recent years, the 
studies of MMC-MTDC mainly focus on the improve-
ment of traditional control methods and the protection 
of DC line faults [91–94]. Although MMC-MTDC tech-
nology has not yet been applied in existing OWFs, it has 
great potential for grid connection of large OWFs.

From these studies, the main technologies of system 
stability and network control strategy based on VSC-
MTDC are summarized in Table 4.

3. Hybrid-HVDC

As shown in Fig.  11, to reduce HVDC converter 
loss, capital cost, and footprint of offshore station and 

consider the relative benefits of LCC and VSC systems, a 
hybrid HVDC system is proposed, one which uses a VSC 
at the offshore terminal and an LCC at the onshore ter-
minal [108, 109]. The other topology with an LCC at off-
shore and a VSC at the onshore, is not suitable for OWF 
integration because LCC station is too large for an off-
shore platform [110]. A novel hybrid HVDC transmission 
system that consists of a PWM-CSC and an LCC is pro-
posed in [111, 112], in which PWM-CSC replaces VSC 
because it has similar advantages as VSC for integration 
of OWFs.

References [109, 113, 115] conduct critical studies on 
the feasibility of using hybrid HVDC technology to inte-
grate OWFs from the aspects of cost, loss, and FRT, and 
propose some control strategies for the entire system. 
However, hybrid HVDC systems have a serious limita-
tion, as when an AC fault occurs at LCC inverter, the 
fault can be converted into a DC fault and potentially 

Table 4 Technologies of VSC-MTDC

Research object Methods Benefits Challenges Complexity Feasibility

Stability of system Converter station
[86, 88]

•  Droop control
•  Active-power control
•  Reactive-power 
control
•  Double closed-loop 
space vector control 
(DCSVC)

•  Requirement of com-
munication alleviated
•  Second frequency 
drop (SFD) reduced
•  Power flow change 
restrained

•  Automatic coordi-
nated control
•  Unbalanced voltage

** ****

DC voltage
[89, 95–100]

•  Single-point DC volt-
age control
•  Multi-point DC voltage 
control
•  Cooperative control
•  DC voltage margin 
control
•  Master–slave control
•  Droop control
•  Direct current match-
ing control (DCMC)
•  Small signal stability 
analysis

•  DC link voltage main-
tained
•  Dispatching DC cur-
rents flexibility improved

•  Design of grid con-
nection points
•  Communications
•  Dynamic responses
•  Expandability

*** ***

Stagey of network 
control

AC grid
[101, 102]

•  Perturbation observer-
based nonlinear control 
(PONC)
•  Sliding-mode control 
nonlinear
•  Model predictive 
control
•  Power redistribution

•  Voltage stability of 
OWFs improved
•  Lumped perturbations 
alleviated
•  Frequency perfor-
mance enhanced

•  Accurate model
•  Power balance
•  Power impulses

*** ****

Wind farm
[88, 103, 104]

•  Cluster control
•  Wind farm pitch 
control
•  Adaptive inertial droop 
control

•  Economic feasibility 
enhanced
•  Dynamic disturbances 
suppressed
•  Frequency deviation 
reduced

•  Compute of cluster’s 
power

*** ***

DC power flow
[105–107]

•  Optimization algo-
rithm
•  Droop control
•  Variable droop control

•  Transient performance 
improved
•  System losses reduced
•  Voltage deviations 
abated

•  Optimization of power 
flows
•  Load predictions
•  Power distribution

**** ***
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destroy the entire hybrid system [108, 110]. Commuta-
tion failure of LCC has always been the most challenging 
issue in hybrid HVDC systems [55, 115].

Although hybrid HVDC systems have the shortcoming 
of commutation failure, the possibility of commutation 
failures can be reduced by devising appropriate control 
strategies. Hybrid HVDC topology that combined LCC 
and MMC is validated as an effective solution to allevi-
ate commutation failures. For example, references [110, 
115] study the commutation failure in hybrid HVDC sys-
tems and evaluate the characteristics of different types 
of MMC (half-bridge and full-bridge) in reducing com-
mutation failure. Furthermore, considering the limita-
tion of MMC capacity, references [116, 117] propose an 
improved control strategy that can address the transient 
stability problem.

Lastly, as LCC absorbs reactive power for commuta-
tion, AC voltage of hybrid HVDC system will fluctuate 

because of wind power variation. Reference [112] pro-
poses a control method for DC current and voltage 
droop, one which suppresses AC voltage fluctuation 
at LCC grid side. The topologies and characteristics 
of hybrid HVDC are comprehensively summarized in 
Table 5.

4. DR-HVDC

To reduce the cost associated with offshore wind 
power integration, DR-HVDC has recently received 
considerable attention. The topology of OWFs collected 
by DR is shown in Fig. 12. This is beneficial for reduc-
ing transmission loss and total cost by replacing VSC 
offshore station by DR [118–120]. Although DR-HVDC 
is economical, it brings many challenges since the con-
trol capabilities of an offshore VSC station is lost. An 

Wind farm 

VSC
rectifier

LCC
inverter

Receiving
networkHVDC

Offshore Onshore

Fig. 11 Hybrid HVDC transmission system

Table 5 Topology of hybrid HVDC for OWFs

Offshore Onshore References Benefits Limitations Feasibility

Hybrid-HVDC VSC LCC Zeng et al. [108] •  Cost saved
•  Power consumption reduced

•  Power flow
•  Difficult start-up
•  Commutation failure

****

LCC VSC Torres et al. [109] •  Power losses cut down
•  Low possibility of commutation 
failure

•  Building scale
•  High capital cost

*

VSC(FB-MMC) LCC Li et al. [110] •  DC fault cleared
•  Commutation failure rate reduced

•  High costs
•  High power losses

****

PWM-CSC LCC Xia et al. [111, 112] •  Circuit structure simple
•  Coupling simple
•  Cost saved

•  Reactive power surplus
•  AC system voltage fluctuation

**

VSC(HB-MMC) LCC Torres et al. [115] •  Ability of DC FRT enhanced
•  Oscillation is suppressed
•  System stability ensured
•  Great scalability

•  Complex control
•  Transmission distance
•  Realization of multi-terminal 
system

****
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important reason why the technology has not been 
widely used for HVDC transmission is the lack of con-
trol capability of DR [121, 122].

So far, due to the superior controllability of MMC 
and the compactness of DR, using auxiliary devices that 
consist of MMC and DR is the most popular solution 
to address the shortcomings of DR-HVDC. Some novel 
topologies of DR-HVDC are listed in Table 6.

Offshore AC grid control, start-up, communication-
less control, and synchronization are the main challenges 
for DR-HVDC. Reference [126] reviews three control 
strategies for AC grid formation and operation of DR-
HVDC-based OWFs and points out that any solution 
must address these problems.

5. ALL-DC Connection

Offshore All-DC wind farms are characterized by DC 
collection and DC transmission. These can eliminate 
the power frequency transformer and multiple power 
converters, and have advantages in power density, cost, 

and efficiency. According to the connection mode of 
WTs, the proposed technology for All-DC OWFs can be 
divided into two types, i.e., series and parallel schemes 
[127].

(a) Series-connection WTs scheme

For series-connection WTs-based OWFs, as shown 
in Fig.  13, the series scheme can directly step up DC 
voltage to HVDC transmission level by series connect-
ing DC wind turbines (DCWTs). This topology elimi-
nates DC-DC converter stations and offshore platforms, 
thereby the capital cost can be significantly reduced.

However, insulation coordination and strong power-
voltage coupling among the series-connected WTs are 
the main technical challenges. To solve these two prob-
lems and especially the system coupling, references 
[128, 129] propose an approach which installs MMC 
in the main network at the receiving-end, while [130] 
proposes a multi-functional DC collector to achieve 
energy collection and cascade boost, in which not only 
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Fig. 12 Topology of wind farm integrated by diode-based rectifier

Table 6 Topology of DR-HVDC for OWFs

Topology types Benefits Challenges Feasibility

DR- series MMC
[123, 124]

•  AC voltage control is enhanced
•  Investment cost, power losses, and volume are reduced
•  Reliability is improved

•  Power rating of MMC
•  Line maintenance

***

DR-parallel MMC
[118, 122]

•  Volume, weight, and cost are reduced
•  Harmonic currents are reduced
•  Active power flow distribution is improved

•  MMC-HVDC link overloaded
•  DR-HVDC overloaded

***

DR(MERS)-CSI
[125]

•  MPPT is achieved
•  Controllability and robustness are enhanced
Generator voltage utilization is improved

•  Cost of DR
•  Equipment maintenance

**
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the coupling among WTs is weakened, but also the cost 
and size of the system are both reduced. Table 7 sum-
marizes the challenges and solutions for series-connec-
tion WTs in recent years.

(b) Parallel-connection WTs scheme

The parallel-connection WTs scheme is shown in 
Fig.  14. This topology has no strong current coupling 
among wind power converters, and the control of 
OWFs is not complex. Converters are directly con-
nected to the medium-voltage direct current (MVDC) 
grid, so a step-up station is required. Since the output 

voltage of wind power generators is low, the design of 
high voltage step-up DC-DC converter stations of par-
allel-connection WTs becomes a core issue [127].

From the perspective of power collection, there are 
three types of offshore step-up substation including AC 
collection, DC series collection, and DC parallel col-
lection, as shown in Fig.  15. Table  8 summarizes the 
characteristics of various topologies [136–138]. Under 
traditional control strategy, DC wind farms act as a 
current source for the power grid, with the character-
istics of small inertia, no damping, and no response to 
the frequency of the power grid.
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Fig. 13 All-DC OWFs series-connection WTs scheme

Table 7 Challenges and solutions for series-connection WTs

References Year Challenges Solutions Performance Feasibility

Insulation 
coordination

Strong 
power-voltage 
coupling

D’Arco, S.; et al. [131] 2012 √ •  Non-insulated converters •  Wind farm efficiency increased **

Shi, G.; et al. [132] 2016 √ •  DCWT with energy storage 
system

•  Wind energy capture enhanced
•  Operation and control of DCWT 
improved

***

Zhang, H.; et al. [133] 2016 √ •  A Topology with Wideband cable 
and MMC

•  Damping characteristic 
enhanced
•  Resonance solved

***

Zhang, H.B.; et al. [134] 2016 √ •  HVDC global control strategy •  WTs operating within safety 
ensured
•  Series connected failures are 
eliminated

***

Rong, F.; et al. [135] 2018 √ •  Novel voltage balance circuit 
topology

•  MMPT achieved
•  Terminal voltages balanced
•  Wind farm normal operation 
ensured

***
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3.2.2  Fault ride‑through technology
An HVDC transmission system for connecting large 
OWFs has different fault responses from those of con-
ventional AC systems [139]. As mentioned above, com-
mutation failure, filter design, and reactive power flow 
are the common problems for LCC-HVDC. In addition, 
because of the long distance between the generator-side 
and grid-side converters, the grid voltage dip cannot be 
accurately identified by the generator-side controller dur-
ing faults [140]. The control of frequency, voltage and 
DC-link current is critical for FRT.

There are two methods used for FRT of OWFs based 
on a VSC-HVDC network. One is the chopper resis-
tor method, which limits DC-link voltage by dissipating 
the imbalanced power as heat. Reference [141] pro-
poses a flywheel energy storage system (FESS), in which 
the imbalance power during fault is absorbed by FESS 
instead of being dissipated in the form of resistive losses. 
However, the high investment cost is the major drawback 
of the chopper resistor method. The other is to reduce 
the output of the wind farm by directly controlling WTs 
or adjusting the voltage and frequency of the wind farm. 
In addition, some studies [142–144] present DC protec-
tion strategies that can eliminate DC short circuit faults 
by using mixed cell modular multi-level converters 
(MC-MMCs).

Hybrid HVDC and DR-HVDC are developed based on 
LCC and VSC so that FRT technology is closely related to 
LCC and VSC. The methods of realizing FRT for the first 
four HVDC topologies for OWFs integration are listed in 
Table 9.

For an ALL-DC system, DC cable failure may affect the 
operation of ALL-DC OWF system. There are no differ-
ences between the onshore converter station of ALL-DC 
OWFs system and VSC-HVDC system. Thus, most DC 

fault diagnosis and protection methods are also applica-
ble to ALL-DC OWF system [142–144].

However, WT type is the biggest difference between 
ALL-DC system and the other four HVDC topologies. 
The operation of ALL-DC OWFs results in significant 
WT output voltage variation. Thus, different technolo-
gies are needed to realize ALL-DC system FRT, especially 
DCWT protection [164]. Reference [165] analyzed the 
characteristics of a transmission line fault in a DC wind 
farm and developed a fault protection method for a wind 
farm DC network, while [166] studies the redundancy of 
the system during DC line failures and proposes a DC 
FRT strategy. The transient characteristics during WT 
and transmission line faults in a series-connection OWF 
system are discussed in [167]. Table 10 provides a com-
prehensive and detailed summary of FRT technology of 
ALL-DC OWF system.

3.3  LFAC transmission system connection
Recently, studies on reducing the complexity and cost of 
OWFs, and increasing reliability have received interest 
from both industry and academia. For cost-effective con-
nection of large OWFs, an LFAC transmission scheme is 
proposed. Although LFAC only has engineering practice 
in railway electrification systems, it can be an alternative 
for HVAC transmission schemes. As for OWFs with a 
transmission distance of 80–180 km, LFAC may be more 
cost-effective than either HVAC or HVDC systems [30, 
31].

3.3.1  Topology type and basic control strategy
A general layout of LFAC transmission system is shown 
in Fig.  16. LFAC is an adaptation from HVAC technol-
ogy and operates at one-third of the nominal frequency. 
This scheme uses AC cables working at low frequency to 
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transmit power from OWFs to the onshore back-to-back 
(BTB) frequency converter, which converts back from 
low frequency to the grid frequency [173]. Compared 
with HVAC, the power transfer capacity and distance of 
LFAC system are increased under the lower frequency 
environment. Another advantage is that LFAC system 
does not need an offshore converter station, so the com-
plexity and cost are reduced considerably compared to 
HVDC [18, 21, 174].

There are different converter types applied in LFAC 
system, including cycloconverter, matrix converter, and 
BTB-VSC. The topologies of the cycloconverter and 
matrix converter are shown in Figs.  17 and 18, respec-
tively. Reference [175] proposes an approach to use 
a modular multilevel matrix converter (M3C) work-
ing as a frequency converter for OWFs. Some studies 
have pointed out that an LFAC system with an onshore 
BTB-VSC converter produces more power losses than 
the cycloconverter. However, in terms of the filtering 
requirements, reliability of grid integration and system 
cost, BTB-VSC is a better choice for LFAC transmission 
systems [176].

For a multi-terminal offshore grid, the multi-terminal 
network can be larger because LFAC can increase AC 
transmission range for connecting OWFs. Compared 
with multi-terminal HVDC, the meshed AC connection 
of LFAC system links can be easily achieved by the exist-
ing low-frequency AC circuit breaker and expertise. Also, 
the design of a low-frequency circuit breaker is easier 
than of a DC circuit breaker.

3.3.2  Fault ride‑through technology
As a full power electronic grid, harmonic stability and 
frequency support provide significant challenges for 
the fault and protection technologies of offshore LFAC 
systems. Reference [177] summarizes the limitations 
of oscillation and short circuit current in LFAC system 
when the speed of WTs is constant, while [178] presents 
a method of analyzing harmonic stability. This shows 

that the control parameters, such as current and voltage 
control bandwidths, can influence harmonic stability. 
An approach of enhancing the frequency support capa-
bility of generators is developed in [179], one which can 
effectively protect the transformers when the frequency 
drops.

LFAC transmission technology has significant potential 
for OWF connection. Most papers focus on the simula-
tion of frequency converter and the economy of the sys-
tem. Some FRT technologies applied in HVAC may be 
suitable for LFAC, and FRT technology of offshore LFAC 
transmission system is at the development stage.

4  Economic analysis of grid connection 
technologies

The economic analysis of OWF integration technologies 
(HVAC, HVDC, and LFAC) has long been a research 
hotspot. The economic evaluation mainly concentrates 
on cost and transmissive power, and the overall cost of a 
large OWF connection system often includes the termi-
nal cost and route cost. The terminal cost of HVAC sys-
tems is cheaper than that of HVDC systems which have 
expensive power converter stations. However, compared 
with HVDC system, the route cost of HVAC systems 
rises much more sharply with distance [19]. Thus, HVAC 
is applicable for short distance offshore power transmis-
sion, while HVDC is more suitable for OWF connection 
when the transmission distance exceeds the threshold. 
Research in [180] shows the intersection of HVAC and 
HVDC costs is in the region of 80  km for subsea cable 
transmission systems.

Figure  19 shows the relationship between the overall 
cost and transmission distance for different OWF con-
nection technologies. Reference [18] evaluates the key 
technologies and costs of transmission systems for large 
OWF connection applications and summarizes the eco-
nomic ranges of different transmission systems based 
on distance and power. The economic ranges of HVAC, 
HVDC, and LFAC are shown in Fig. 20.

Table 8 Topologies and characteristics of the offshore step-up substation

Topology type Benefits Challenges Complexity

AC collection [136] •  Robust power control real-
ized
•  Harmonic voltage reduced
•  Common-mode voltage 
reduced

•  FRT
•  Influence of AC frequency on the circuit breaker

****

DC series collection [137] •  Cost loss
•  Requirement of DC/DC 
convert gain reduced

•  Fault protection
•  Control of strong coupling
•  Working voltage range

***

DC parallel connection [138] •  High reliability
•  Flexible operation

•  Requirement of DC/DC convert gain **
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Table 9 FRT technologies of HVDC (four topologies)

Topology type of HVDC Methods of FRT Objectives Performance Economy Complexity Superiority

LCC-HVDC Voltage control
[54, 140]

•  Capacitor bank
•  Rectifier station
•  Controlled voltage source

•  Power balance achieved
•  Voltage obtained
•  System stability enhanced

**** ** **

DC-link current control
[145, 146]

•  PMSG
•  Grid-side converters
•  Rectifier firing angle

•  Power reduction without 
communication
•  Undesired tripping 
avoided

**** **** ****

Frequency control
[54, 146]

•  Power flow
•  Grid frequency controllers
•  Capacitor

•  Frequency obtained
•  Power balance achieved
•  FRT realized

**** **** ****

VSC-HVDC Chopper resistor
[147]

•  Converter station
•  Wind farm excess energy
•  Power of unloading 
resistance

•  Dynamic reactive support 
provided
•  Power balanced

*** **** ***

Voltage control
[148–150]

•  Controlled voltage drops
•  Coordinated control 
scheme
•  Onshore station

•  Fast power reduction 
achieved
•  Communication delay 
eliminated
•  Over-voltage control abil-
ity improved
System stability increased

**** *** ***

Frequency control
[88, 150–152]

•  Capacitors
•  WTs
•  Onshore VSC stations

•  Frequency extremes and 
rate reduced
•  Frequency deviation 
eliminated
•  SFD alleviated
•  Frequency support 
provided

*** *** ****

WT output control
[88, 150, 153–155]

•  Reactive power compen-
sation
•  Receive end converters
•  Power reduction factor
•  Positive-sequence-volt-
age-dependent (PSVD)

•  DC voltage limited
•  AC grid stability improved
•  FRT compliance improved

*** *** ****

DC protection
[142–144]

•  MMC
•  DC circuit breakers
•  Hybrid circuit breaker

•  Resiliency of DC faults 
enhanced
•  Continued operation abil-
ity improved
•  Switching time shortened
•  Transient response aug-
mented

*** *** ****

Hybrid-HVDC AC fault protection
[156–158]

•  Overvoltage fixed firing 
angle
•  AC and DC components 
of voltage

•  Inverter-side overvoltage 
reduced
•  Safety and stability 
maintained

*** *** ****

DC fault protection
[158–160]

•  DC chopper (DCC)
•  Voltage-dependent cur-
rent order limiter (VDCOL)
•  Short-term overload 
capacity of MMC
•  HB-MMC
•  High rating series diode 
valve

•  Unbalanced power 
eliminated
•  Commutation failure 
suppressed
•  VSC DC overvoltage sup-
pressed
•  Electric eliminated
•  DC overvoltage level 
reduced
•  Fault currents blocked

*** *** ****
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Table 9 (continued)

Topology type of HVDC Methods of FRT Objectives Performance Economy Complexity Superiority

DR-HVDC DC fault protection
[119, 161]

•  WT current
•  WT converters
•  FB-MMC

•  System fast recovery 
facilitated
•  Potential overcurrent risk 
reduced
•  Semiconductor losses 
decreased

*** *** ****

AC fault protection
[162, 163]

•  Communication-free LVRT 
strategy
•  Voltage control
•  Current control

•  Voltage restoration 
enhanced
•  Rotor angle stability 
strengthened
•  Rated power delivery 
resumed

*** *** ****

Table 10 FRT technology of ALL-DC OWF system

References Year Fault types Methods Performance Feasibility

Deng et al. [166] 2013 Short-circuit fault •  Redundancy operation approach
•  Control WT power demand

•  Healthy cable used
•  More power transmitted
•  System performance improved

****

Shah et al. [167] 2014 Grounding fault
Short-circuit fault

•  Breaker less fault protection 
strategy
•  Simplified equivalent circuit

•  Fault transient stresses mitigated
•  Fault transient oscillation alleviated

***

Zhang et al. [133] 2016 DC cable fault •  Pi-section cable model
•  Small capacitance cable model
•  Wideband cable model

•  Damping effect improved
•  System oscillation damping real-
ized

***

Guo et al. [168] 2016 WT overvoltage
WT under-voltage

•  Voltage adjustment procedure •  Over-voltage and under-voltage 
eliminated
•  Energy production increased

****

Rodriguez et al. [169] 2016 DC/DC converter overvoltage •  Utilization of storage system
•  Current control

•  Overvoltage suppressed
•  MPPT realized

****

Zhang et al. [170, 171] 2016 WT overvoltage •  Global control strategy
•  Onshore MMC control

•  WT operation safe voltage ensured
•  WT normal power maintained

***

Himanshu et al. [164] 2019 Voltage variation •  Modified WT with storage
•  Power flow calculation

•  WT voltage variation mitigated ***

Guo et al. [172] 2020 Grounding fault •  Improved wind energy conversion 
systems
•  Grounding fault detection
A novel topology

•  Converter protected
•  Fault current cut off

***

WT

WT

WT

50Hz
Grid

50/3Hz
AC DC 50Hz

AC... Collector
Grid

Transformer

Cable

BTB-VSC

50/3Hz 50Hz

Offshore Onshore

Fig. 16 General layout for LFAC system
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5  Summary and discussion
HVAC is a desirable choice for OWFs with an offshore 
distance less than 60 km. The reactive current from AC 
cables is the major limitation of HVAC transmission 
technology. In contrast, HVDC has no capacitance effect, 
so it is regarded as the most economical solution for long 
distance power transmission. In addition, VSC-HVDC 
has the benefits of distinct control and design structure, 
and is deemed as the technology leader for OWF inte-
gration at distances of more than 100 km. However, the 
building of offshore stations is a huge challenge when 
considering overall cost and reliability. LVAC transmis-
sion technology is a novel approach for OWF connec-
tions. Although there is no practical LVAC experience 
with OWFs, many studies have shown the significance of 

LVAC for future OWF integration. In summary, the clas-
sification and performance of large OWF grid connec-
tion technologies are elaborated in Table 11, and Table 12 
introduces some engineering examples of the three inte-
gration technologies.

Figure 21 shows the evaluation of the characteristics of 
existing OWF integration technologies. The evaluation 
includes five specific indicators, i.e., economic, complex-
ity, reliability, feasibility, and superiority [18, 21, 30, 31, 
152]. The evaluation criteria of each integration technol-
ogy are given as follows:

(a) Economic evaluation mainly includes construction 
cost, transmission losses, and transmission capacity, 
while each of the following elements will contrib-
ute to the additional economic level: (i) less reac-
tive power loss of cable; (ii) no offshore converter 
station; (iii) no expensive power electronics such as 
IGBT; (iv) no HVDC circuit breaker; (v) bulk capac-
ity and long-distance transmission.

(b) Complexity is mainly evaluated by structure of 
transmission line, type of WTs, and complex power 
electronic equipment. The following elements influ-
ence the complexity level: (i) application of MMC; 
(ii) number of AC-DC conversion steps; (iii) con-
struction of offshore converter station; (iv) addi-
tional reactive power compensation device.

(c) Reliability is mainly evaluated by the possibility of 
faults, which are divided into five levels: (i) higher 
than 30% (very low); (ii) 15%-30% (low); (iii) 10%-

Single-Phase 
Frequency 
Converter 

50Hz system
Single-Phase 
Frequency 
Converter 

Single-Phase 
Frequency 
Converter 

A

B
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Fig. 17 Topology of the cycloconverter
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Fig. 18 Structure of matrix converter (M3C)
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15% (medium); (iv) 5%-10% (high); (v) lower than 
5% (very high). LCC-HVDC has a higher possibility 
of commutation failure so its reliability is the lowest 
in all integration technologies.

(d) Feasibility mainly depends on reliability and cost, 
and is influenced by the following elements: (i) con-
struction of offshore converter station; (ii) offshore 
wind plant down time; (iii) the number and size of 
OWF physical assets.

(e) Superiority is mainly evaluated by each technology’s 
proposed time and contribution on the economic 
and system simplification, while the following ele-
ments contribute to superiority level: (i) proposed 
after 2000; (ii) reduce the system complexity; (iii) 
fewer AC-DC converter stations; (iv) reduce the 
reactive power loss of cable; (iv) long-distance 
transmission.

6  Conclusions and perspectives
This work comprehensively summarizes three types of 
grid connection technologies of large OWF integration, 
which contain seven transmission technologies: HVAC, 
LCC-HVDC, VSC-HVDC, Hybrid-HVDC, DR-HVDC, 
ALL-DC, and LFAC. FRT technologies for each grid 
connection scheme of large OWFs are also thoroughly 
investigated, together with several control strategies 
of overvoltage and SFD. Furthermore, a reasonable 
and considered evaluation is proposed to undertake a 
detailed and comprehensive comparison of different 
transmission systems for large OWF integration, one 
which provides practical instructions and guidelines 
for researchers and engineers working in the field. The 
main conclusions are:
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Fig. 19 Relationship between cost and distance for the three technologies
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• Conventional HVAC transmission technology has 
high reliability and mature application experience, 
and is therefore considered as the first choice for 
most large OWFs. However, with the construction 
of offshore wind farms being further away from the 
onshore connection point, the transmission distance 
of HVAC system is limited by the capacitive charging 
effect of the cables. Thus, HVAC is suitable for OWFs 
at a distance less than 60 km;

• Though HVDC transmission technology does not 
have reactive power loss on cables, the cost of off-
shore and onshore converter stations is greatly 
increased. Therefore, an HVDC scheme is more 
appropriate for large OWFs over long transmission 
distances;

• Although LCC-HVDC has been extensively applied 
in onshore power networks and wind farms, it is 
difficult to build LCC stations offshore. Thus, LCC 
transmission technology must be coordinated with 
other technologies to provide a more cost-efficient 
scheme for large OWF integration;

• Because of the benefits of distinct control and design, 
VSC-HVDC has become the technology leader for 
OWF integration at distances of more than 100 km. 
The development of MMC technology greatly 
reduces the capital investment and complexity of 
VSC-HVDC systems;

• Hybrid-HVDC combines the benefits of VSC and 
LCC, and can reduce converter loss, capital cost, and 
footprint of the offshore station. However, the biggest 
challenge of LCC is commutation failure, which may 
cause the failure of Hybrid-HVDC systems. The pos-
sibility of LCC commutation failure can be signifi-
cantly decreased by using MMC, and the system with 
an MMC station offshore and LCC station onshore is 
critical to the economic operation of large OWFs.

• DR can replace VSC offshore station and reduce 
transmission loss and total cost, but the uncontrol-
lability of DR brings challenges to the stability of 
DR-HVDC system. However, MMC technology has 
superior controllability, and MMC as an auxiliary 
device of DR can effectively solve this problem;

• ALL-DC transmission systems need specially 
designed DCWTs. As a novel transmission technol-
ogy, such configuration eliminates the requirement 
of offshore power frequency transformers and power 
converters. Thus, ALL-DC possesses promising 
potential for the development of OWF integration;

• LFAC can overcome the disadvantages of HVAC, and 
further reduce the complexity and cost of the system. 
At the same time, the reliability of the operation of 
OWFs is also being improved. Although LFAC tech-
nology only has engineering practice in rail track 
electrification systems, it can be further explored 
for replacing HVAC or HVDC for integrating large 
OWFs.

In general, various integration technologies have their 
own respective performance and applications. The moti-
vation of these transmission technologies is to increase 
the efficiency of power transmission and minimize the 
cost and complexity of the system. This work has dis-
cussed such systems for large OWF integration, aiming 
to greatly improve the development of offshore wind 
power and optimize the energy structure.

Future studies of grid connection technologies for large 
OWFs integration will mainly focus on the following 
aspects:

• The development of offshore wind power pro-
vides a promising scheme to alleviate the issue of 
climate change and energy supply, while OWFs 

Table 12 Engineering examples about integration technology

Engineering project Start of 
operation

Integration technology Location

HVAC HVDC LFAC

London Array 2013 √ UK

Walney Extension 2018 √ UK

Super Station 2015 √ USA

South West link 2013 √ Sweden

Dol Win 1 2013 √ Germany

Veja Mate 2014 √ Germany

Zhoushan Multi-Terminal VSC-HVDC Transmission Project 2014 √ China

Jiangsu Rudong offshore wind power project 2021 √ China

Nan’ao Multi-Terminal VSC-HVDC project 2014 √ China

Zhongbu Tingshan flexible low frequency transmission project 2021 √ China
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Fig. 21 Evaluation of characteristic for existing OWFs integration technologies
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have fewer visual and noise problems than onshore 
wind farms. Nevertheless, the marine ecosystem 
is influenced by the construction of OWFs, while 
the perch of some halobios may also be disturbed. 
Therefore, the impact of OWFs on the marine eco-
system must be studied in detail, and the ground-
ing electrode should be reduced when connecting 
offshore converter stations to reduce the impact of 
high current return on the ecosystem. To this end, 
the construction, operation, and maintenance of 
OWFs should minimize the negative impact on the 
ocean system;

• OWFs are developing towards large capacity with 
long distance power transmission, and thus, the 
transmission system for large OWF integration must 
focus on reducing system complexity and enhanc-
ing the overall feasibility, especially in the design of 
offshore WTs. The quality of components still needs 
to be improved and the installation time reduced. 
Moreover, future OWFs will feature higher towers, 
larger rotors, and more advanced electrical technol-
ogy. The main operation and characteristics of future 
OWFs are defined by six core areas, that is, quantity 
of wind farms, number of WTs, installed capacity, 
water depth, turbine height, and transmission dis-
tance;

• There is a prominent trend that more power elec-
tronic devices, such as MMC, will be introduced in 
the transmission technology of OWFs, but the sys-
tem stability of AC grid may also be influenced at 
the same time. Thus, the operational performance of 
voltage and frequency should be investigated. In par-
ticular, the issues of frequency drop, oscillation, and 
active frequency support are the main challenges for 
the normal operation of OWF systems;

• ALL-DC and LVAC transmission technologies have 
been proposed in recent years. These, in theory, can 
improve the operation economy, but they lack engi-
neering practice. Moreover, the economic startup 
of ALL-DC systems and DR-HVDC systems should 
also be investigated. In general, it is imperative to 
further explore the implementation feasibility of new 
technologies for large OWF integration:

• Fault response and protection of OWFs are discussed 
in many studies. With the application of new trans-
mission technologies on OWF integration, FRT tech-
nologies still need more in-depth study and inves-
tigation. Currently, artificial intelligence shows the 
greatest potential for promoting the development of 
future FRT technologies for OWFs;

• Cost-effective distances and economic evaluation 
of the seven grid connection technologies for large 
OWFs differ among different studies. Therefore, the 

applications and assessments of all technologies 
should be more precise and comprehensive.
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